
Intro Repairing GCM Simeck Design Summery

Revisiting Counter Mode to
Repair Galois/Counter Mode

Bo Zhu, Yin Tan and Guang Gong
University of Waterloo, Canada

Aug 12, 2013

1 of 32 Revisiting CM to Repair GCM



Intro Repairing GCM Simeck Design Summery

Revisiting Counter Mode to
Repair Galois/Counter Mode

and
Simeck: An Authenticated Cipher Design

Bo Zhu, Yin Tan and Guang Gong
University of Waterloo, Canada

Aug 12, 2013

2 of 32 Revisiting CM to Repair GCM, and Simeck



Intro Repairing GCM Simeck Design Summery

Motivations

I To study existing modes of operations
I Before designing authenticated ciphers

I Recent attacks on GCM
I A flaw found in GCM’s security proofs in Crypto’12
I Forgery attacks in FSE’12 and FSE’13

I To study lightweight cipher designs
I To use with mode of operation
I Two block ciphers designed by people from NSA
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Intro Repairing GCM Simeck Design Summery

Outline

Intro to Galois/Counter Mode

Repairing Galois/Counter Mode
The flaw in GCM’s proofs discovered by Iwata et al.
A fix to GCM’s security proofs and bounds

Simeck: A Simple Authenticated Cipher Design
Design Rationales
Specifications

Summery and Future Work
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Intro Repairing GCM Simeck Design Summery

Galois/Counter Mode (GCM)

I One design of AEAD by McGrew and Viega in 2005
I Counter Mode (CM) for encryption
I Galois MAC (GMAC) for authentication

I GCM comparing to CCM (CM + CBC-MAC)
I Less popular than CCM for historical reasons

I Supported by OpenSSH from v6.2 (March 2013)

I Incluced in NSA Suite B (CCM isn’t in)
I Suite A is classified

I Parallelizable computation
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Intro Repairing GCM Simeck Design Summery

Authentication by Galois MAC (GMAC)

Additions and multiplications in GF (2128)

I Authentication key: H = EK (0)

The image is from Procter and Cid’s slides in FSE’13.
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Intro Repairing GCM Simeck Design Summery

Polynomial Based GHASH

I GMAC = GHASH(H,A,C ) + EK (IV )

I GHASH

hH(M) =
m∑
i=1

Mi × Hm−i+1 = gM(H)

I Note: constant term is zero
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Intro Repairing GCM Simeck Design Summery

Encryption in Counter Mode (CM)

The image is from Saarinen’s paper in FSE’12.
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Intro Repairing GCM Simeck Design Summery

Counter Generation

I Initial counter
I N0 = IV ||032, if len(IV ) = 96
I N0 = GHASHH(IV ), if len(IV ) 6= 96

I Generating counters

Nr+1 = msb96(Nr )||lsb32(Nr )� 1

I Security of GCM highly depends the prob of counter collisions
I N ′0 = N ′′0 ,

N ′r1 = N ′′r2
I if len(IV ) 6= 96,

GHASH(IV1) = GHASH(IV2),
GHASH(IV1)� r1 = GHASH(IV2)� r2

I GHASH(IV1)� (r1 − r2) = GHASH(IV2)
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Intro Repairing GCM Simeck Design Summery

Counter Generation (Cont.)

GHASH(IV1)� r = GHASH(IV2)
hH(IV1)� r = hH(IV2)

gIV1(H)� r = gIV2(H)

I For a randomly chosen H, the collision prob is

#{x : x ∈ GF (2128)|gIV 1(x)� r = gIV 2(x)}
2128

I In the original security proofs of GCM, it was believed

gIV1(x)� r = gIV2(x)

has the same number of solutions as

gIV1(x)⊕ r = gIV2(x)

which is upper-bounded by

max{deg(gIV1(x)), deg(gIV2(x))} = max{len(IV1), len(IV2)}+ 1
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Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Problem in Nr � 1

I Pointed out by Iwata et al. in Crypto’12

I Nr � 1 is non-linear in Galois field

I

f (x)� r = g(x)

can be converted to multiple forms of equations in GF

I Much more solutions than expected

max{len(IV1), len(IV2)}+ 1

I αr times more solutions
I for r < 232, αr is up to 222

αr · (max{len(IV1), len(IV2)}+ 1)
≤ 222 · (max{len(IV1), len(IV2)}+ 1)

13 of 32 Revisiting CM to Repair GCM, and Simeck



Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Problem in Nr � 1

I Pointed out by Iwata et al. in Crypto’12

I Nr � 1 is non-linear in Galois field

I

f (x)� r = g(x)

can be converted to multiple forms of equations in GF

I Much more solutions than expected

max{len(IV1), len(IV2)}+ 1

I αr times more solutions
I for r < 232, αr is up to 222

αr · (max{len(IV1), len(IV2)}+ 1)
≤ 222 · (max{len(IV1), len(IV2)}+ 1)

13 of 32 Revisiting CM to Repair GCM, and Simeck



Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Actual Security Bounds of GCM

I New security bounds of GCM were also given by Iwata et al.
I for both of privacy (encryption) and authenticity (MAC)
I almost 222 looser than originally claimed

I It would be better to repair GCM s.t.
I retain the original bounds, and
I leave original proofs largely unchanged
I with a small fix to the original design
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Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Revisiting Counter Mode

I In CM, counter is incremented by 1, i.e.

next(counter) = counter � 1

I CM is secure if next() outputs uniquely
I next() is indistinguishable if the underlying block cipher is

secure

I McGrew, Counter Mode Security: Analysis and
Recommendations, 2002
I The details of the next-counter function are unimportant;
I That function does not provide any security properties other

than the uniqueness of the inputs to the block cipher.

I Design a different next() to “fix” GCM?
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Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Requirements of next()

1. Cyclic permutation with one circle
I non-repeating

2. Number of solutions for

nextr (f (x)) = g(x)

should be as small as possible compared to

max{deg(f ), deg(g)}

I To reduce counter collision probability

3. nextr1(f (x)) = nextr2(g(x))⇔ nextr1�r2(f (x)) = g(x)
I e.g., f (x)� r1 = g(x)� r2 ⇔ f (x)� (r1 � r2) = g(x)
I to keep the original proofs largely unchanged
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Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Designing next()

Consider the two basic operations that won’t increase degrees of
f (x) and g(x)
I addition, i.e. XOR

I not a permutation
I unless defined as next(N, r) = N ⊕ r , with r as another input
I but f ⊕ r1 = g ⊕ r2 6=⇒ f ⊕ (r1 � r2) = g

I e.g., f ⊕ 2 = g ⊕ 1 6=⇒ f ⊕ (2� 1) = f ⊕ 1 = g

I multiplication, by a constant
I multiplying with a primitive element w
I w r1 f = w r2g =⇒ w r1�r2 f = g
I cyclic permutation with two cycles

I {1,w ,w 2, · · · ,w 2n−2}, and {0}

17 of 32 Revisiting CM to Repair GCM, and Simeck



Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Designing next()

Consider the two basic operations that won’t increase degrees of
f (x) and g(x)
I addition, i.e. XOR

I not a permutation

I unless defined as next(N, r) = N ⊕ r , with r as another input
I but f ⊕ r1 = g ⊕ r2 6=⇒ f ⊕ (r1 � r2) = g

I e.g., f ⊕ 2 = g ⊕ 1 6=⇒ f ⊕ (2� 1) = f ⊕ 1 = g

I multiplication, by a constant
I multiplying with a primitive element w
I w r1 f = w r2g =⇒ w r1�r2 f = g
I cyclic permutation with two cycles

I {1,w ,w 2, · · · ,w 2n−2}, and {0}

17 of 32 Revisiting CM to Repair GCM, and Simeck



Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Designing next()

Consider the two basic operations that won’t increase degrees of
f (x) and g(x)
I addition, i.e. XOR

I not a permutation
I unless defined as next(N, r) = N ⊕ r , with r as another input

I but f ⊕ r1 = g ⊕ r2 6=⇒ f ⊕ (r1 � r2) = g
I e.g., f ⊕ 2 = g ⊕ 1 6=⇒ f ⊕ (2� 1) = f ⊕ 1 = g

I multiplication, by a constant
I multiplying with a primitive element w
I w r1 f = w r2g =⇒ w r1�r2 f = g
I cyclic permutation with two cycles

I {1,w ,w 2, · · · ,w 2n−2}, and {0}

17 of 32 Revisiting CM to Repair GCM, and Simeck



Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Designing next()

Consider the two basic operations that won’t increase degrees of
f (x) and g(x)
I addition, i.e. XOR

I not a permutation
I unless defined as next(N, r) = N ⊕ r , with r as another input
I but f ⊕ r1 = g ⊕ r2 6=⇒ f ⊕ (r1 � r2) = g

I e.g., f ⊕ 2 = g ⊕ 1 6=⇒ f ⊕ (2� 1) = f ⊕ 1 = g

I multiplication, by a constant
I multiplying with a primitive element w
I w r1 f = w r2g =⇒ w r1�r2 f = g
I cyclic permutation with two cycles

I {1,w ,w 2, · · · ,w 2n−2}, and {0}

17 of 32 Revisiting CM to Repair GCM, and Simeck



Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Designing next()

Consider the two basic operations that won’t increase degrees of
f (x) and g(x)
I addition, i.e. XOR

I not a permutation
I unless defined as next(N, r) = N ⊕ r , with r as another input
I but f ⊕ r1 = g ⊕ r2 6=⇒ f ⊕ (r1 � r2) = g

I e.g., f ⊕ 2 = g ⊕ 1 6=⇒ f ⊕ (2� 1) = f ⊕ 1 = g

I multiplication, by a constant
I multiplying with a primitive element w

I w r1 f = w r2g =⇒ w r1�r2 f = g
I cyclic permutation with two cycles

I {1,w ,w 2, · · · ,w 2n−2}, and {0}

17 of 32 Revisiting CM to Repair GCM, and Simeck



Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Designing next()

Consider the two basic operations that won’t increase degrees of
f (x) and g(x)
I addition, i.e. XOR

I not a permutation
I unless defined as next(N, r) = N ⊕ r , with r as another input
I but f ⊕ r1 = g ⊕ r2 6=⇒ f ⊕ (r1 � r2) = g

I e.g., f ⊕ 2 = g ⊕ 1 6=⇒ f ⊕ (2� 1) = f ⊕ 1 = g

I multiplication, by a constant
I multiplying with a primitive element w
I w r1 f = w r2g =⇒ w r1�r2 f = g

I cyclic permutation with two cycles
I {1,w ,w 2, · · · ,w 2n−2}, and {0}

17 of 32 Revisiting CM to Repair GCM, and Simeck



Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Designing next()

Consider the two basic operations that won’t increase degrees of
f (x) and g(x)
I addition, i.e. XOR

I not a permutation
I unless defined as next(N, r) = N ⊕ r , with r as another input
I but f ⊕ r1 = g ⊕ r2 6=⇒ f ⊕ (r1 � r2) = g

I e.g., f ⊕ 2 = g ⊕ 1 6=⇒ f ⊕ (2� 1) = f ⊕ 1 = g

I multiplication, by a constant
I multiplying with a primitive element w
I w r1 f = w r2g =⇒ w r1�r2 f = g
I cyclic permutation with two cycles

I {1,w ,w 2, · · · ,w 2n−2}, and {0}

17 of 32 Revisiting CM to Repair GCM, and Simeck



Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Merging Two Circles into One

Lw (x) =


0 if x = w2n−2,

1 if x = 0,

w · x otherwise.

I Lw (x) is full-cycle permutation

I Lr1w (f (x)) = Lr2w (g(x))⇔ Lr1�r2w (f (x)) = g(x)

I Next, to investigate the number of solutions for

Lrw (f (x)) = g(x)
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Lrw (f (x)) = g(x)

1. If f (x) = 0,
1.1 If Lrw (f (x)) = 0, then g(x) = 0.

1.2 If Lrw (f (x)) 6= 0, then g(x) = w r−1.
2. If f (x) 6= 0,

2.1 If Lrw (f (x)) = 0, then g(x) = 0.
2.2 If Lrw (f (x)) 6= 0, let f (x) = w r1 and Lrw (f (x)) = w r2 , where

0 ≤ r1, r2 < 2n − 1. Then we have
2.2.1 If r1 ≤ r2, then w r f (x) = g(x).
2.2.2 If r1 > r2, then w r−1f (x) = g(x).

x must be a root of one of
g(x) = 0,
g(x) = w r−1,

w r f (x) = g(x),
w r−1f (x) = g(x).

So #solutions ≤ 4 · (max{deg(f ), deg(g)}).
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LGCM – Revised GCM

I Replacing counter � 1 by Lw

N0 = GHASHH(IV )
Ni = Liw (N0)

I The upper bound of counter collision will decrease
I from 222d to 22d

I Tighten the bounds of GCM by around 220 (1 million) times
I Both privacy and authenticity
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For Timing-based Side-channel

Lw (x) =


0 if x = w2n−2,

1 if x = 0,

w · x otherwise.

can change to
y = w · x ,

Lw (x) =


1 if y = 0,

0 if y = 1,

y otherwise.
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Outline

Intro to Galois/Counter Mode

Repairing Galois/Counter Mode
The flaw in GCM’s proofs discovered by Iwata et al.
A fix to GCM’s security proofs and bounds

Simeck: A Simple Authenticated Cipher Design
Design Rationales
Specifications

Summery and Future Work
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Simeck: An Authenticated Cipher Design

I LGCM + a lightweight block cipher

I Specs of the block cipher in one tweet (140 chars)

I tweetcipher designed by Aumasson needs 6 tweets
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Block Cipher Design

I Consider the two block ciphers designed by Beaulieu et al.
from NSA
I hardware-optimized cipher Simon
I software-optimized cipher Speck

I Design comparisons
I Round function, both Feistel-like network

Simon Use AND for efficiency of hardware
Speck ARX construction; decryption cannot reuse encryption

functions

I Key schedule

Simon Linear operations with constant sequences
Speck Cleverly reuse round function

I How about we combine them two?
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Simeck = Simon + Speck

I Combine the efficient designs
I Round function of Simon
I Key schedule of Speck

I Minimal design
I Keep the design as simple as possible
I If we could find attacks on the mini design

I Get attacks on Simon and/or Speck
I or understand more about Simon and Speck

I Get a fairly good authenticated cipher design
if no serious attack is found
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Simeck Round function

Simplified from Simon

I Remove S1

I Change S8 to S5, S2 to S1

The left image is from the Simon and Speck design paper.
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Simeck Key Schedule

Learn from Speck

The image is from the Simon and Speck design paper.
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Parameters and Performance

I 128-bit block cipher, compatible with LGCM

I 128/196/254 bits for master keys

I 32/48/64 rounds for security-levels

I Hardware implementation
I Reuse the round function in key schedule
I Less bits of rotations
I Smaller footprint than hardware-optimized Simon

I Software implementation
I Comparable software performance with software-oriented Speck
I Decryption can reuse encryption round function
I Small code size (ROM) for software

I Compact and clean specification (in one tweet!)
I Ideal for “lazy” programmers
I Neither Simon, nor Speck can fit into 140 chars
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Summery and Future Work

I Repairing GCM
I Merging two cycles by Lw
I Consider cyclic permutation polynomials?
I Redo proofs and recompute bounds with other fixes?

I Designing Simeck
I Ideas/designs from Simon and Speck
I To attack Simeck?
I More efficient mode of operation than GCM?
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Thanks for your attention!
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