
Intro Repairing GCM Simeck Design Summery

Revisiting Counter Mode to
Repair Galois/Counter Mode

Bo Zhu, Yin Tan and Guang Gong
University of Waterloo, Canada

Aug 12, 2013

1 of 32 Revisiting CM to Repair GCM

Intro Repairing GCM Simeck Design Summery

Revisiting Counter Mode to
Repair Galois/Counter Mode

and
Simeck: An Authenticated Cipher Design

Bo Zhu, Yin Tan and Guang Gong
University of Waterloo, Canada

Aug 12, 2013

2 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Motivations

I To study existing modes of operations
I Before designing authenticated ciphers

I Recent attacks on GCM
I A flaw found in GCM’s security proofs in Crypto’12
I Forgery attacks in FSE’12 and FSE’13

I To study lightweight cipher designs
I To use with mode of operation
I Two block ciphers designed by people from NSA

3 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Motivations

I To study existing modes of operations
I Before designing authenticated ciphers
I Recent attacks on GCM

I A flaw found in GCM’s security proofs in Crypto’12
I Forgery attacks in FSE’12 and FSE’13

I To study lightweight cipher designs
I To use with mode of operation
I Two block ciphers designed by people from NSA

3 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Motivations

I To study existing modes of operations
I Before designing authenticated ciphers
I Recent attacks on GCM

I A flaw found in GCM’s security proofs in Crypto’12
I Forgery attacks in FSE’12 and FSE’13

I To study lightweight cipher designs
I To use with mode of operation

I Two block ciphers designed by people from NSA

3 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Motivations

I To study existing modes of operations
I Before designing authenticated ciphers
I Recent attacks on GCM

I A flaw found in GCM’s security proofs in Crypto’12
I Forgery attacks in FSE’12 and FSE’13

I To study lightweight cipher designs
I To use with mode of operation
I Two block ciphers designed by people from NSA

3 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Outline

Intro to Galois/Counter Mode

Repairing Galois/Counter Mode
The flaw in GCM’s proofs discovered by Iwata et al.
A fix to GCM’s security proofs and bounds

Simeck: A Simple Authenticated Cipher Design
Design Rationales
Specifications

Summery and Future Work

4 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Outline

Intro to Galois/Counter Mode

Repairing Galois/Counter Mode
The flaw in GCM’s proofs discovered by Iwata et al.
A fix to GCM’s security proofs and bounds

Simeck: A Simple Authenticated Cipher Design
Design Rationales
Specifications

Summery and Future Work

5 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Galois/Counter Mode (GCM)

I One design of AEAD by McGrew and Viega in 2005
I Counter Mode (CM) for encryption
I Galois MAC (GMAC) for authentication

I GCM comparing to CCM (CM + CBC-MAC)
I Less popular than CCM for historical reasons

I Supported by OpenSSH from v6.2 (March 2013)

I Incluced in NSA Suite B (CCM isn’t in)
I Suite A is classified

I Parallelizable computation

6 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Authentication by Galois MAC (GMAC)

Additions and multiplications in GF (2128)

I Authentication key: H = EK (0)

The image is from Procter and Cid’s slides in FSE’13.

7 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Polynomial Based GHASH

I GMAC = GHASH(H,A,C) + EK (IV)

I GHASH

hH(M) =
m∑
i=1

Mi × Hm−i+1 = gM(H)

I Note: constant term is zero

8 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Encryption in Counter Mode (CM)

The image is from Saarinen’s paper in FSE’12.

9 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Counter Generation

I Initial counter
I N0 = IV ||032, if len(IV) = 96
I N0 = GHASHH(IV), if len(IV) 6= 96

I Generating counters

Nr+1 = msb96(Nr)||lsb32(Nr)� 1

I Security of GCM highly depends the prob of counter collisions
I N ′0 = N ′′0 ,

N ′r1 = N ′′r2
I if len(IV) 6= 96,

GHASH(IV1) = GHASH(IV2),
GHASH(IV1)� r1 = GHASH(IV2)� r2

I GHASH(IV1)� (r1 − r2) = GHASH(IV2)

10 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Counter Generation

I Initial counter
I N0 = IV ||032, if len(IV) = 96
I N0 = GHASHH(IV), if len(IV) 6= 96

I Generating counters

Nr+1 = msb96(Nr)||lsb32(Nr)� 1

I Security of GCM highly depends the prob of counter collisions
I N ′0 = N ′′0 ,

N ′r1 = N ′′r2
I if len(IV) 6= 96,

GHASH(IV1) = GHASH(IV2),
GHASH(IV1)� r1 = GHASH(IV2)� r2

I GHASH(IV1)� (r1 − r2) = GHASH(IV2)

10 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Counter Generation

I Initial counter
I N0 = IV ||032, if len(IV) = 96
I N0 = GHASHH(IV), if len(IV) 6= 96

I Generating counters

Nr+1 = msb96(Nr)||lsb32(Nr)� 1

I Security of GCM highly depends the prob of counter collisions
I N ′0 = N ′′0 ,

N ′r1 = N ′′r2

I if len(IV) 6= 96,
GHASH(IV1) = GHASH(IV2),
GHASH(IV1)� r1 = GHASH(IV2)� r2

I GHASH(IV1)� (r1 − r2) = GHASH(IV2)

10 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Counter Generation

I Initial counter
I N0 = IV ||032, if len(IV) = 96
I N0 = GHASHH(IV), if len(IV) 6= 96

I Generating counters

Nr+1 = msb96(Nr)||lsb32(Nr)� 1

I Security of GCM highly depends the prob of counter collisions
I N ′0 = N ′′0 ,

N ′r1 = N ′′r2
I if len(IV) 6= 96,

GHASH(IV1) = GHASH(IV2),
GHASH(IV1)� r1 = GHASH(IV2)� r2

I GHASH(IV1)� (r1 − r2) = GHASH(IV2)

10 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Counter Generation

I Initial counter
I N0 = IV ||032, if len(IV) = 96
I N0 = GHASHH(IV), if len(IV) 6= 96

I Generating counters

Nr+1 = msb96(Nr)||lsb32(Nr)� 1

I Security of GCM highly depends the prob of counter collisions
I N ′0 = N ′′0 ,

N ′r1 = N ′′r2
I if len(IV) 6= 96,

GHASH(IV1) = GHASH(IV2),
GHASH(IV1)� r1 = GHASH(IV2)� r2

I GHASH(IV1)� (r1 − r2) = GHASH(IV2)

10 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Counter Generation (Cont.)

GHASH(IV1)� r = GHASH(IV2)
hH(IV1)� r = hH(IV2)

gIV1(H)� r = gIV2(H)

I For a randomly chosen H, the collision prob is

#{x : x ∈ GF (2128)|gIV 1(x)� r = gIV 2(x)}
2128

I In the original security proofs of GCM, it was believed

gIV1(x)� r = gIV2(x)

has the same number of solutions as

gIV1(x)⊕ r = gIV2(x)

which is upper-bounded by

max{deg(gIV1(x)), deg(gIV2(x))} = max{len(IV1), len(IV2)}+ 1

11 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Counter Generation (Cont.)

GHASH(IV1)� r = GHASH(IV2)
hH(IV1)� r = hH(IV2)
gIV1(H)� r = gIV2(H)

I For a randomly chosen H, the collision prob is

#{x : x ∈ GF (2128)|gIV 1(x)� r = gIV 2(x)}
2128

I In the original security proofs of GCM, it was believed

gIV1(x)� r = gIV2(x)

has the same number of solutions as

gIV1(x)⊕ r = gIV2(x)

which is upper-bounded by

max{deg(gIV1(x)), deg(gIV2(x))} = max{len(IV1), len(IV2)}+ 1

11 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Counter Generation (Cont.)

GHASH(IV1)� r = GHASH(IV2)
hH(IV1)� r = hH(IV2)
gIV1(H)� r = gIV2(H)

I For a randomly chosen H, the collision prob is

#{x : x ∈ GF (2128)|gIV 1(x)� r = gIV 2(x)}
2128

I In the original security proofs of GCM, it was believed

gIV1(x)� r = gIV2(x)

has the same number of solutions as

gIV1(x)⊕ r = gIV2(x)

which is upper-bounded by

max{deg(gIV1(x)), deg(gIV2(x))} = max{len(IV1), len(IV2)}+ 1

11 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Counter Generation (Cont.)

GHASH(IV1)� r = GHASH(IV2)
hH(IV1)� r = hH(IV2)
gIV1(H)� r = gIV2(H)

I For a randomly chosen H, the collision prob is

#{x : x ∈ GF (2128)|gIV 1(x)� r = gIV 2(x)}
2128

I In the original security proofs of GCM, it was believed

gIV1(x)� r = gIV2(x)

has the same number of solutions as

gIV1(x)⊕ r = gIV2(x)

which is upper-bounded by

max{deg(gIV1(x)), deg(gIV2(x))} = max{len(IV1), len(IV2)}+ 1

11 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Counter Generation (Cont.)

GHASH(IV1)� r = GHASH(IV2)
hH(IV1)� r = hH(IV2)
gIV1(H)� r = gIV2(H)

I For a randomly chosen H, the collision prob is

#{x : x ∈ GF (2128)|gIV 1(x)� r = gIV 2(x)}
2128

I In the original security proofs of GCM, it was believed

gIV1(x)� r = gIV2(x)

has the same number of solutions as

gIV1(x)⊕ r = gIV2(x)

which is upper-bounded by

max{deg(gIV1(x)), deg(gIV2(x))} = max{len(IV1), len(IV2)}+ 1

11 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Outline

Intro to Galois/Counter Mode

Repairing Galois/Counter Mode
The flaw in GCM’s proofs discovered by Iwata et al.
A fix to GCM’s security proofs and bounds

Simeck: A Simple Authenticated Cipher Design
Design Rationales
Specifications

Summery and Future Work

12 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Problem in Nr � 1

I Pointed out by Iwata et al. in Crypto’12

I Nr � 1 is non-linear in Galois field

I

f (x)� r = g(x)

can be converted to multiple forms of equations in GF

I Much more solutions than expected

max{len(IV1), len(IV2)}+ 1

I αr times more solutions
I for r < 232, αr is up to 222

αr · (max{len(IV1), len(IV2)}+ 1)
≤ 222 · (max{len(IV1), len(IV2)}+ 1)

13 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Problem in Nr � 1

I Pointed out by Iwata et al. in Crypto’12

I Nr � 1 is non-linear in Galois field

I

f (x)� r = g(x)

can be converted to multiple forms of equations in GF

I Much more solutions than expected

max{len(IV1), len(IV2)}+ 1

I αr times more solutions
I for r < 232, αr is up to 222

αr · (max{len(IV1), len(IV2)}+ 1)
≤ 222 · (max{len(IV1), len(IV2)}+ 1)

13 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Actual Security Bounds of GCM

I New security bounds of GCM were also given by Iwata et al.
I for both of privacy (encryption) and authenticity (MAC)
I almost 222 looser than originally claimed

I It would be better to repair GCM s.t.
I retain the original bounds, and
I leave original proofs largely unchanged
I with a small fix to the original design

14 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Actual Security Bounds of GCM

I New security bounds of GCM were also given by Iwata et al.
I for both of privacy (encryption) and authenticity (MAC)
I almost 222 looser than originally claimed

I It would be better to repair GCM s.t.
I retain the original bounds, and
I leave original proofs largely unchanged
I with a small fix to the original design

14 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Revisiting Counter Mode

I In CM, counter is incremented by 1, i.e.

next(counter) = counter � 1

I CM is secure if next() outputs uniquely
I next() is indistinguishable if the underlying block cipher is

secure

I McGrew, Counter Mode Security: Analysis and
Recommendations, 2002
I The details of the next-counter function are unimportant;
I That function does not provide any security properties other

than the uniqueness of the inputs to the block cipher.

I Design a different next() to “fix” GCM?

15 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Revisiting Counter Mode

I In CM, counter is incremented by 1, i.e.

next(counter) = counter � 1

I CM is secure if next() outputs uniquely
I next() is indistinguishable if the underlying block cipher is

secure

I McGrew, Counter Mode Security: Analysis and
Recommendations, 2002
I The details of the next-counter function are unimportant;
I That function does not provide any security properties other

than the uniqueness of the inputs to the block cipher.

I Design a different next() to “fix” GCM?

15 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Revisiting Counter Mode

I In CM, counter is incremented by 1, i.e.

next(counter) = counter � 1

I CM is secure if next() outputs uniquely
I next() is indistinguishable if the underlying block cipher is

secure

I McGrew, Counter Mode Security: Analysis and
Recommendations, 2002
I The details of the next-counter function are unimportant;
I That function does not provide any security properties other

than the uniqueness of the inputs to the block cipher.

I Design a different next() to “fix” GCM?

15 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Revisiting Counter Mode

I In CM, counter is incremented by 1, i.e.

next(counter) = counter � 1

I CM is secure if next() outputs uniquely
I next() is indistinguishable if the underlying block cipher is

secure

I McGrew, Counter Mode Security: Analysis and
Recommendations, 2002
I The details of the next-counter function are unimportant;
I That function does not provide any security properties other

than the uniqueness of the inputs to the block cipher.

I Design a different next() to “fix” GCM?

15 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Requirements of next()

1. Cyclic permutation with one circle
I non-repeating

2. Number of solutions for

nextr (f (x)) = g(x)

should be as small as possible compared to

max{deg(f), deg(g)}

I To reduce counter collision probability

3. nextr1(f (x)) = nextr2(g(x))⇔ nextr1�r2(f (x)) = g(x)
I e.g., f (x)� r1 = g(x)� r2 ⇔ f (x)� (r1 � r2) = g(x)
I to keep the original proofs largely unchanged

16 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Requirements of next()

1. Cyclic permutation with one circle
I non-repeating

2. Number of solutions for

nextr (f (x)) = g(x)

should be as small as possible compared to

max{deg(f), deg(g)}

I To reduce counter collision probability

3. nextr1(f (x)) = nextr2(g(x))⇔ nextr1�r2(f (x)) = g(x)
I e.g., f (x)� r1 = g(x)� r2 ⇔ f (x)� (r1 � r2) = g(x)
I to keep the original proofs largely unchanged

16 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Requirements of next()

1. Cyclic permutation with one circle
I non-repeating

2. Number of solutions for

nextr (f (x)) = g(x)

should be as small as possible compared to

max{deg(f), deg(g)}

I To reduce counter collision probability

3. nextr1(f (x)) = nextr2(g(x))⇔ nextr1�r2(f (x)) = g(x)
I e.g., f (x)� r1 = g(x)� r2 ⇔ f (x)� (r1 � r2) = g(x)
I to keep the original proofs largely unchanged

16 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Designing next()

Consider the two basic operations that won’t increase degrees of
f (x) and g(x)
I addition, i.e. XOR

I not a permutation
I unless defined as next(N, r) = N ⊕ r , with r as another input
I but f ⊕ r1 = g ⊕ r2 6=⇒ f ⊕ (r1 � r2) = g

I e.g., f ⊕ 2 = g ⊕ 1 6=⇒ f ⊕ (2� 1) = f ⊕ 1 = g

I multiplication, by a constant
I multiplying with a primitive element w
I w r1 f = w r2g =⇒ w r1�r2 f = g
I cyclic permutation with two cycles

I {1,w ,w 2, · · · ,w 2n−2}, and {0}

17 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Designing next()

Consider the two basic operations that won’t increase degrees of
f (x) and g(x)
I addition, i.e. XOR

I not a permutation

I unless defined as next(N, r) = N ⊕ r , with r as another input
I but f ⊕ r1 = g ⊕ r2 6=⇒ f ⊕ (r1 � r2) = g

I e.g., f ⊕ 2 = g ⊕ 1 6=⇒ f ⊕ (2� 1) = f ⊕ 1 = g

I multiplication, by a constant
I multiplying with a primitive element w
I w r1 f = w r2g =⇒ w r1�r2 f = g
I cyclic permutation with two cycles

I {1,w ,w 2, · · · ,w 2n−2}, and {0}

17 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Designing next()

Consider the two basic operations that won’t increase degrees of
f (x) and g(x)
I addition, i.e. XOR

I not a permutation
I unless defined as next(N, r) = N ⊕ r , with r as another input

I but f ⊕ r1 = g ⊕ r2 6=⇒ f ⊕ (r1 � r2) = g
I e.g., f ⊕ 2 = g ⊕ 1 6=⇒ f ⊕ (2� 1) = f ⊕ 1 = g

I multiplication, by a constant
I multiplying with a primitive element w
I w r1 f = w r2g =⇒ w r1�r2 f = g
I cyclic permutation with two cycles

I {1,w ,w 2, · · · ,w 2n−2}, and {0}

17 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Designing next()

Consider the two basic operations that won’t increase degrees of
f (x) and g(x)
I addition, i.e. XOR

I not a permutation
I unless defined as next(N, r) = N ⊕ r , with r as another input
I but f ⊕ r1 = g ⊕ r2 6=⇒ f ⊕ (r1 � r2) = g

I e.g., f ⊕ 2 = g ⊕ 1 6=⇒ f ⊕ (2� 1) = f ⊕ 1 = g

I multiplication, by a constant
I multiplying with a primitive element w
I w r1 f = w r2g =⇒ w r1�r2 f = g
I cyclic permutation with two cycles

I {1,w ,w 2, · · · ,w 2n−2}, and {0}

17 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Designing next()

Consider the two basic operations that won’t increase degrees of
f (x) and g(x)
I addition, i.e. XOR

I not a permutation
I unless defined as next(N, r) = N ⊕ r , with r as another input
I but f ⊕ r1 = g ⊕ r2 6=⇒ f ⊕ (r1 � r2) = g

I e.g., f ⊕ 2 = g ⊕ 1 6=⇒ f ⊕ (2� 1) = f ⊕ 1 = g

I multiplication, by a constant
I multiplying with a primitive element w

I w r1 f = w r2g =⇒ w r1�r2 f = g
I cyclic permutation with two cycles

I {1,w ,w 2, · · · ,w 2n−2}, and {0}

17 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Designing next()

Consider the two basic operations that won’t increase degrees of
f (x) and g(x)
I addition, i.e. XOR

I not a permutation
I unless defined as next(N, r) = N ⊕ r , with r as another input
I but f ⊕ r1 = g ⊕ r2 6=⇒ f ⊕ (r1 � r2) = g

I e.g., f ⊕ 2 = g ⊕ 1 6=⇒ f ⊕ (2� 1) = f ⊕ 1 = g

I multiplication, by a constant
I multiplying with a primitive element w
I w r1 f = w r2g =⇒ w r1�r2 f = g

I cyclic permutation with two cycles
I {1,w ,w 2, · · · ,w 2n−2}, and {0}

17 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Designing next()

Consider the two basic operations that won’t increase degrees of
f (x) and g(x)
I addition, i.e. XOR

I not a permutation
I unless defined as next(N, r) = N ⊕ r , with r as another input
I but f ⊕ r1 = g ⊕ r2 6=⇒ f ⊕ (r1 � r2) = g

I e.g., f ⊕ 2 = g ⊕ 1 6=⇒ f ⊕ (2� 1) = f ⊕ 1 = g

I multiplication, by a constant
I multiplying with a primitive element w
I w r1 f = w r2g =⇒ w r1�r2 f = g
I cyclic permutation with two cycles

I {1,w ,w 2, · · · ,w 2n−2}, and {0}

17 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Merging Two Circles into One

Lw (x) =


0 if x = w2n−2,

1 if x = 0,

w · x otherwise.

I Lw (x) is full-cycle permutation

I Lr1w (f (x)) = Lr2w (g(x))⇔ Lr1�r2w (f (x)) = g(x)

I Next, to investigate the number of solutions for

Lrw (f (x)) = g(x)

18 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Merging Two Circles into One

Lw (x) =


0 if x = w2n−2,

1 if x = 0,

w · x otherwise.

I Lw (x) is full-cycle permutation

I Lr1w (f (x)) = Lr2w (g(x))⇔ Lr1�r2w (f (x)) = g(x)

I Next, to investigate the number of solutions for

Lrw (f (x)) = g(x)

18 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Merging Two Circles into One

Lw (x) =


0 if x = w2n−2,

1 if x = 0,

w · x otherwise.

I Lw (x) is full-cycle permutation

I Lr1w (f (x)) = Lr2w (g(x))⇔ Lr1�r2w (f (x)) = g(x)

I Next, to investigate the number of solutions for

Lrw (f (x)) = g(x)

18 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Merging Two Circles into One

Lw (x) =


0 if x = w2n−2,

1 if x = 0,

w · x otherwise.

I Lw (x) is full-cycle permutation

I Lr1w (f (x)) = Lr2w (g(x))⇔ Lr1�r2w (f (x)) = g(x)

I Next, to investigate the number of solutions for

Lrw (f (x)) = g(x)

18 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Lrw (f (x)) = g(x)

1. If f (x) = 0,
1.1 If Lrw (f (x)) = 0, then g(x) = 0.

1.2 If Lrw (f (x)) 6= 0, then g(x) = w r−1.
2. If f (x) 6= 0,

2.1 If Lrw (f (x)) = 0, then g(x) = 0.
2.2 If Lrw (f (x)) 6= 0, let f (x) = w r1 and Lrw (f (x)) = w r2 , where

0 ≤ r1, r2 < 2n − 1. Then we have
2.2.1 If r1 ≤ r2, then w r f (x) = g(x).
2.2.2 If r1 > r2, then w r−1f (x) = g(x).

x must be a root of one of
g(x) = 0,
g(x) = w r−1,

w r f (x) = g(x),
w r−1f (x) = g(x).

So #solutions ≤ 4 · (max{deg(f), deg(g)}).

19 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Lrw (f (x)) = g(x)

1. If f (x) = 0,
1.1 If Lrw (f (x)) = 0, then g(x) = 0.
1.2 If Lrw (f (x)) 6= 0, then g(x) = w r−1.

2. If f (x) 6= 0,
2.1 If Lrw (f (x)) = 0, then g(x) = 0.
2.2 If Lrw (f (x)) 6= 0, let f (x) = w r1 and Lrw (f (x)) = w r2 , where

0 ≤ r1, r2 < 2n − 1. Then we have
2.2.1 If r1 ≤ r2, then w r f (x) = g(x).
2.2.2 If r1 > r2, then w r−1f (x) = g(x).

x must be a root of one of
g(x) = 0,
g(x) = w r−1,

w r f (x) = g(x),
w r−1f (x) = g(x).

So #solutions ≤ 4 · (max{deg(f), deg(g)}).

19 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Lrw (f (x)) = g(x)

1. If f (x) = 0,
1.1 If Lrw (f (x)) = 0, then g(x) = 0.
1.2 If Lrw (f (x)) 6= 0, then g(x) = w r−1.

2. If f (x) 6= 0,
2.1 If Lrw (f (x)) = 0, then g(x) = 0.

2.2 If Lrw (f (x)) 6= 0, let f (x) = w r1 and Lrw (f (x)) = w r2 , where
0 ≤ r1, r2 < 2n − 1. Then we have

2.2.1 If r1 ≤ r2, then w r f (x) = g(x).
2.2.2 If r1 > r2, then w r−1f (x) = g(x).

x must be a root of one of
g(x) = 0,
g(x) = w r−1,

w r f (x) = g(x),
w r−1f (x) = g(x).

So #solutions ≤ 4 · (max{deg(f), deg(g)}).

19 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Lrw (f (x)) = g(x)

1. If f (x) = 0,
1.1 If Lrw (f (x)) = 0, then g(x) = 0.
1.2 If Lrw (f (x)) 6= 0, then g(x) = w r−1.

2. If f (x) 6= 0,
2.1 If Lrw (f (x)) = 0, then g(x) = 0.
2.2 If Lrw (f (x)) 6= 0, let f (x) = w r1 and Lrw (f (x)) = w r2 , where

0 ≤ r1, r2 < 2n − 1. Then we have
2.2.1 If r1 ≤ r2, then w r f (x) = g(x).
2.2.2 If r1 > r2, then w r−1f (x) = g(x).

x must be a root of one of
g(x) = 0,
g(x) = w r−1,

w r f (x) = g(x),
w r−1f (x) = g(x).

So #solutions ≤ 4 · (max{deg(f), deg(g)}).

19 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

Lrw (f (x)) = g(x)

1. If f (x) = 0,
1.1 If Lrw (f (x)) = 0, then g(x) = 0.
1.2 If Lrw (f (x)) 6= 0, then g(x) = w r−1.

2. If f (x) 6= 0,
2.1 If Lrw (f (x)) = 0, then g(x) = 0.
2.2 If Lrw (f (x)) 6= 0, let f (x) = w r1 and Lrw (f (x)) = w r2 , where

0 ≤ r1, r2 < 2n − 1. Then we have
2.2.1 If r1 ≤ r2, then w r f (x) = g(x).
2.2.2 If r1 > r2, then w r−1f (x) = g(x).

x must be a root of one of
g(x) = 0,
g(x) = w r−1,

w r f (x) = g(x),
w r−1f (x) = g(x).

So #solutions ≤ 4 · (max{deg(f), deg(g)}).
19 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

LGCM – Revised GCM

I Replacing counter � 1 by Lw

N0 = GHASHH(IV)
Ni = Liw (N0)

I The upper bound of counter collision will decrease
I from 222d to 22d

I Tighten the bounds of GCM by around 220 (1 million) times
I Both privacy and authenticity

20 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Provable Security Reparing GCM

For Timing-based Side-channel

Lw (x) =


0 if x = w2n−2,

1 if x = 0,

w · x otherwise.

can change to
y = w · x ,

Lw (x) =


1 if y = 0,

0 if y = 1,

y otherwise.

21 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Design Rationales Specifications

Outline

Intro to Galois/Counter Mode

Repairing Galois/Counter Mode
The flaw in GCM’s proofs discovered by Iwata et al.
A fix to GCM’s security proofs and bounds

Simeck: A Simple Authenticated Cipher Design
Design Rationales
Specifications

Summery and Future Work

22 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Design Rationales Specifications

Simeck: An Authenticated Cipher Design

I LGCM + a lightweight block cipher

I Specs of the block cipher in one tweet (140 chars)

I tweetcipher designed by Aumasson needs 6 tweets

23 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Design Rationales Specifications

Simeck: An Authenticated Cipher Design

I LGCM + a lightweight block cipher

I Specs of the block cipher in one tweet (140 chars)

I tweetcipher designed by Aumasson needs 6 tweets

23 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Design Rationales Specifications

24 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Design Rationales Specifications

Block Cipher Design

I Consider the two block ciphers designed by Beaulieu et al.
from NSA
I hardware-optimized cipher Simon
I software-optimized cipher Speck

I Design comparisons
I Round function, both Feistel-like network

Simon Use AND for efficiency of hardware
Speck ARX construction; decryption cannot reuse encryption

functions

I Key schedule

Simon Linear operations with constant sequences
Speck Cleverly reuse round function

I How about we combine them two?

25 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Design Rationales Specifications

Block Cipher Design

I Consider the two block ciphers designed by Beaulieu et al.
from NSA
I hardware-optimized cipher Simon
I software-optimized cipher Speck

I Design comparisons
I Round function, both Feistel-like network

Simon Use AND for efficiency of hardware
Speck ARX construction; decryption cannot reuse encryption

functions

I Key schedule

Simon Linear operations with constant sequences
Speck Cleverly reuse round function

I How about we combine them two?

25 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Design Rationales Specifications

Block Cipher Design

I Consider the two block ciphers designed by Beaulieu et al.
from NSA
I hardware-optimized cipher Simon
I software-optimized cipher Speck

I Design comparisons
I Round function, both Feistel-like network

Simon Use AND for efficiency of hardware
Speck ARX construction; decryption cannot reuse encryption

functions

I Key schedule

Simon Linear operations with constant sequences
Speck Cleverly reuse round function

I How about we combine them two?

25 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Design Rationales Specifications

Block Cipher Design

I Consider the two block ciphers designed by Beaulieu et al.
from NSA
I hardware-optimized cipher Simon
I software-optimized cipher Speck

I Design comparisons
I Round function, both Feistel-like network

Simon Use AND for efficiency of hardware
Speck ARX construction; decryption cannot reuse encryption

functions

I Key schedule

Simon Linear operations with constant sequences
Speck Cleverly reuse round function

I How about we combine them two?

25 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Design Rationales Specifications

Simeck = Simon + Speck

I Combine the efficient designs
I Round function of Simon
I Key schedule of Speck

I Minimal design
I Keep the design as simple as possible
I If we could find attacks on the mini design

I Get attacks on Simon and/or Speck
I or understand more about Simon and Speck

I Get a fairly good authenticated cipher design
if no serious attack is found

26 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Design Rationales Specifications

Simeck Round function

Simplified from Simon

I Remove S1

I Change S8 to S5, S2 to S1

The left image is from the Simon and Speck design paper.

27 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Design Rationales Specifications

Simeck Key Schedule

Learn from Speck

The image is from the Simon and Speck design paper.

28 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Design Rationales Specifications

Parameters and Performance

I 128-bit block cipher, compatible with LGCM

I 128/196/254 bits for master keys

I 32/48/64 rounds for security-levels

I Hardware implementation
I Reuse the round function in key schedule
I Less bits of rotations
I Smaller footprint than hardware-optimized Simon

I Software implementation
I Comparable software performance with software-oriented Speck
I Decryption can reuse encryption round function
I Small code size (ROM) for software

I Compact and clean specification (in one tweet!)
I Ideal for “lazy” programmers
I Neither Simon, nor Speck can fit into 140 chars

29 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Design Rationales Specifications

Parameters and Performance

I 128-bit block cipher, compatible with LGCM

I 128/196/254 bits for master keys

I 32/48/64 rounds for security-levels
I Hardware implementation

I Reuse the round function in key schedule
I Less bits of rotations
I Smaller footprint than hardware-optimized Simon

I Software implementation
I Comparable software performance with software-oriented Speck
I Decryption can reuse encryption round function
I Small code size (ROM) for software

I Compact and clean specification (in one tweet!)
I Ideal for “lazy” programmers
I Neither Simon, nor Speck can fit into 140 chars

29 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Design Rationales Specifications

Parameters and Performance

I 128-bit block cipher, compatible with LGCM

I 128/196/254 bits for master keys

I 32/48/64 rounds for security-levels
I Hardware implementation

I Reuse the round function in key schedule
I Less bits of rotations
I Smaller footprint than hardware-optimized Simon

I Software implementation
I Comparable software performance with software-oriented Speck
I Decryption can reuse encryption round function
I Small code size (ROM) for software

I Compact and clean specification (in one tweet!)
I Ideal for “lazy” programmers
I Neither Simon, nor Speck can fit into 140 chars

29 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery Design Rationales Specifications

Parameters and Performance

I 128-bit block cipher, compatible with LGCM

I 128/196/254 bits for master keys

I 32/48/64 rounds for security-levels
I Hardware implementation

I Reuse the round function in key schedule
I Less bits of rotations
I Smaller footprint than hardware-optimized Simon

I Software implementation
I Comparable software performance with software-oriented Speck
I Decryption can reuse encryption round function
I Small code size (ROM) for software

I Compact and clean specification (in one tweet!)
I Ideal for “lazy” programmers
I Neither Simon, nor Speck can fit into 140 chars

29 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Outline

Intro to Galois/Counter Mode

Repairing Galois/Counter Mode
The flaw in GCM’s proofs discovered by Iwata et al.
A fix to GCM’s security proofs and bounds

Simeck: A Simple Authenticated Cipher Design
Design Rationales
Specifications

Summery and Future Work

30 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Summery and Future Work

I Repairing GCM
I Merging two cycles by Lw
I Consider cyclic permutation polynomials?
I Redo proofs and recompute bounds with other fixes?

I Designing Simeck
I Ideas/designs from Simon and Speck
I To attack Simeck?
I More efficient mode of operation than GCM?

31 of 32 Revisiting CM to Repair GCM, and Simeck

Intro Repairing GCM Simeck Design Summery

Thanks for your attention!

32 of 32 Revisiting CM to Repair GCM, and Simeck

	Intro to Galois/Counter Mode
	Repairing Galois/Counter Mode
	The flaw in GCM's proofs discovered by Iwata et al.
	A fix to GCM's security proofs and bounds

	Simeck: A Simple Authenticated Cipher Design
	Design Rationales
	Specifications

	Summery and Future Work

