Revisiting Counter Mode to Repair Galois/Counter Mode

Bo Zhu, Yin Tan and Guang Gong
University of Waterloo, Canada

Aug 12, 2013
Revisiting Counter Mode to Repair Galois/Counter Mode and Simeck: An Authenticated Cipher Design

Bo Zhu, Yin Tan and Guang Gong
University of Waterloo, Canada

Aug 12, 2013
Motivations

- To study existing modes of operations
 - Before designing authenticated ciphers
Motivations

- To study existing modes of operations
 - Before designing authenticated ciphers
 - Recent attacks on GCM
 - A flaw found in GCM’s security proofs in Crypto’12
 - Forgery attacks in FSE’12 and FSE’13
Motivations

- To study existing modes of operations
 - Before designing authenticated ciphers
 - Recent attacks on GCM
 - A flaw found in GCM’s security proofs in Crypto’12
 - Forgery attacks in FSE’12 and FSE’13
- To study lightweight cipher designs
 - To use with mode of operation
Motivations

- To study existing modes of operations
 - Before designing authenticated ciphers
 - Recent attacks on GCM
 - A flaw found in GCM’s security proofs in Crypto’12
 - Forgery attacks in FSE’12 and FSE’13
- To study lightweight cipher designs
 - To use with mode of operation
 - Two block ciphers designed by people from NSA
Outline

Intro to Galois/Counter Mode

Repairing Galois/Counter Mode
The flaw in GCM’s proofs discovered by Iwata et al.
A fix to GCM’s security proofs and bounds

Simeck: A Simple Authenticated Cipher Design
Design Rationales
Specifications

Summery and Future Work
Outline

Intro to Galois/Counter Mode

Repairing Galois/Counter Mode
 The flaw in GCM’s proofs discovered by Iwata et al.
 A fix to GCM’s security proofs and bounds

Simeck: A Simple Authenticated Cipher Design
 Design Rationales
 Specifications

Summery and Future Work
Galois/Counter Mode (GCM)

- One design of AEAD by McGrew and Viega in 2005
 - Counter Mode (CM) for encryption
 - Galois MAC (GMAC) for authentication
- GCM comparing to CCM (CM + CBC-MAC)
 - Less popular than CCM for historical reasons
 - Supported by OpenSSH from v6.2 (March 2013)
 - Included in NSA Suite B (CCM isn’t in)
 - Suite A is classified
 - Parallelizable computation
Authentication by Galois MAC (GMAC)

Additions and multiplications in $GF(2^{128})$

- Authentication key: $H = E_K(0)$

The image is from Procter and Cid’s slides in FSE’13.
Polynomial Based GHASH

- $GMAC = GHASH(H, A, C) + E_K(IV)$

- GHASH

\[
h_H(M) = \sum_{i=1}^{m} M_i \times H^{m-i+1} = g_M(H)
\]

- Note: constant term is zero
Encryption in Counter Mode (CM)

The image is from Saarinen's paper in FSE'12.
Counter Generation

- Initial counter
 - $N_0 = IV \| 0^{32}$, if $\text{len}(IV) = 96$
 - $N_0 = \text{GHASH}_H(IV)$, if $\text{len}(IV) \neq 96$
Counter Generation

- Initial counter
 - $N_0 = IV \| 0^{32}$, if $\text{len}(IV) = 96$
 - $N_0 = \text{GHASH}_H(IV)$, if $\text{len}(IV) \neq 96$

- Generating counters
 \[N_{r+1} = \text{msb}_{96}(N_r) \| \text{lsb}_{32}(N_r) \oplus 1 \]
Counter Generation

- Initial counter
 - $N_0 = IV \| 0^{32}$, if $\text{len}(IV) = 96$
 - $N_0 = \text{GHASH}_H(IV)$, if $\text{len}(IV) \neq 96$

- Generating counters

 $$N_{r+1} = \text{msb}_{96}(N_r) \| \text{lsb}_{32}(N_r) \oplus 1$$

- Security of GCM highly depends on the probability of counter collisions
 - $N'_0 = N''_0$,
 $N'_{r_1} = N''_{r_2}$
Counter Generation

- **Initial counter**
 - $N_0 = IV || 0^{32}$, if $\text{len}(IV) = 96$
 - $N_0 = GHASH_H(IV)$, if $\text{len}(IV) \neq 96$

- **Generating counters**
 \[
 N_{r+1} = \text{msb}_{96}(N_r) || \text{lsb}_{32}(N_r) \oplus 1
 \]

- **Security of GCM highly depends the prob of counter collisions**
 - $N'_0 = N''_0$
 - $N'_r = N''_r$
 - if $\text{len}(IV) \neq 96$,
 - $GHASH(IV_1) = GHASH(IV_2)$,
 - $GHASH(IV_1) \oplus r_1 = GHASH(IV_2) \oplus r_2$
Counter Generation

- Initial counter
 - $N_0 = IV\||0^{32}$, if $\text{len}(IV) = 96$
 - $N_0 = \text{GHASH}_H(IV)$, if $\text{len}(IV) \neq 96$
- Generating counters

\[
N_{r+1} = \text{msb}_{96}(N_r)\||\text{lsb}_{32}(N_r) \oplus 1
\]

- Security of GCM highly depends the prob of counter collisions
 - $N'_0 = N''_0$, $N'_{r_1} = N''_{r_2}$
 - if $\text{len}(IV) \neq 96$,
 - $\text{GHASH}(IV_1) = \text{GHASH}(IV_2)$,
 - $\text{GHASH}(IV_1) \oplus r_1 = \text{GHASH}(IV_2) \oplus r_2$
 - $\text{GHASH}(IV_1) \oplus (r_1 - r_2) = \text{GHASH}(IV_2)$
Counter Generation (Cont.)

\[
\begin{align*}
\text{GHASH}(IV_1) \boxplus r &= \text{GHASH}(IV_2) \\
h_H(IV_1) \boxplus r &= h_H(IV_2)
\end{align*}
\]
Counter Generation (Cont.)

\[
\begin{align*}
\text{GHASH}(IV_1) \oplus r &= \text{GHASH}(IV_2) \\
h_H(IV_1) \oplus r &= h_H(IV_2) \\
g_{IV_1}(H) \oplus r &= g_{IV_2}(H)
\end{align*}
\]
Counter Generation (Cont.)

\[
\begin{align*}
GHASH(IV_1) \oplus r &= GHASH(IV_2) \\
h_H(IV_1) \oplus r &= h_H(IV_2) \\
g_{IV_1}(H) \oplus r &= g_{IV_2}(H)
\end{align*}
\]

- For a randomly chosen \(H \), the collision prob is

\[
\#\{x : x \in GF(2^{128})|g_{IV_1}(x) \oplus r = g_{IV_2}(x)\}
\]

\[
\frac{1}{2^{128}}
\]
Counter Generation (Cont.)

\[
\begin{align*}
GHASH(IV_1) \oplus r &= GHASH(IV_2) \\
h_H(IV_1) \oplus r &= h_H(IV_2) \\
g_{IV_1}(H) \oplus r &= g_{IV_2}(H)
\end{align*}
\]

- For a randomly chosen \(H \), the collision prob is

\[
\frac{\#\{x : x \in GF(2^{128}) | g_{IV_1}(x) \oplus r = g_{IV_2}(x)\}}{2^{128}}
\]

- In the original security proofs of GCM, it was believed

\[
g_{IV_1}(x) \oplus r = g_{IV_2}(x)
\]

has the same number of solutions as

\[
g_{IV_1}(x) \oplus r = g_{IV_2}(x)
\]
Counter Generation (Cont.)

\[\text{GHASH}(IV_1) \oplus r = \text{GHASH}(IV_2) \]
\[h_H(IV_1) \oplus r = h_H(IV_2) \]
\[g_{IV_1}(H) \oplus r = g_{IV_2}(H) \]

- For a randomly chosen \(H \), the collision prob is
 \[\#\{x : x \in GF(2^{128}) | g_{IV_1}(x) \oplus r = g_{IV_2}(x)\} \]
 \[\frac{2^{128}}{2^{128}} \]
- In the original security proofs of GCM, it was believed
 \[g_{IV_1}(x) \oplus r = g_{IV_2}(x) \]
 has the same number of solutions as
 \[g_{IV_1}(x) \oplus r = g_{IV_2}(x) \]
 which is upper-bounded by
 \[\max\{\deg(g_{IV_1}(x)), \deg(g_{IV_2}(x))\} = \max\{\text{len}(IV_1), \text{len}(IV_2)\} + 1 \]
Outline

Intro to Galois/Counter Mode

Repairing Galois/Counter Mode
 The flaw in GCM’s proofs discovered by Iwata et al.
 A fix to GCM’s security proofs and bounds

Simeck: A Simple Authenticated Cipher Design
 Design Rationales
 Specifications

Summery and Future Work
Problem in $N_r \oplus 1$

- Pointed out by Iwata et al. in Crypto’12
- $N_r \oplus 1$ is non-linear in Galois field
- $f(x) \oplus r = g(x)$

Can be converted to multiple forms of equations in GF
Problem in $N_r \oplus 1$

- Pointed out by Iwata et al. in Crypto’12
- $N_r \oplus 1$ is non-linear in Galois field

$$f(x) \oplus r = g(x)$$

can be converted to multiple forms of equations in GF

- Much more solutions than expected

$$\max\{\text{len}(IV_1), \text{len}(IV_2)\} + 1$$

- α_r times more solutions
 - for $r < 2^{32}$, α_r is up to 2^{22}
 $$\alpha_r \cdot (\max\{\text{len}(IV_1), \text{len}(IV_2)\} + 1)$$
 $$\leq 2^{22} \cdot (\max\{\text{len}(IV_1), \text{len}(IV_2)\} + 1)$$
Actual Security Bounds of GCM

- New security bounds of GCM were also given by Iwata et al.
 - for both of privacy (encryption) and authenticity (MAC)
 - almost 2^{22} looser than originally claimed
Actual Security Bounds of GCM

- New security bounds of GCM were also given by Iwata et al.
 - for both of privacy (encryption) and authenticity (MAC)
 - almost 2^{22} looser than originally claimed
- It would be better to repair GCM s.t.
 - retain the original bounds, and
 - leave original proofs largely unchanged
 - with a small fix to the original design
Revisiting Counter Mode

- In CM, counter is incremented by 1, i.e.

\[
\text{next}(\text{counter}) = \text{counter} \oplus 1
\]
Revisiting Counter Mode

- In CM, counter is incremented by 1, i.e.

\[\text{next}(\text{counter}) = \text{counter} \oplus 1 \]

- CM is secure if \(\text{next}() \) outputs uniquely
 - \(\text{next}() \) is indistinguishable if the underlying block cipher is secure
Revisiting Counter Mode

- In CM, counter is incremented by 1, i.e.
 \[\text{next}(\text{counter}) = \text{counter} \oplus 1 \]

- CM is secure if next() outputs uniquely
 - next() is indistinguishable if the underlying block cipher is secure

 - The details of the next-counter function are unimportant;
 - That function does not provide any security properties other than the uniqueness of the inputs to the block cipher.
Revisiting Counter Mode

- In CM, counter is incremented by 1, i.e.

\[\text{next}(\text{counter}) = \text{counter} \oplus 1 \]

- CM is secure if \(\text{next}() \) outputs uniquely
 - \(\text{next}() \) is indistinguishable if the underlying block cipher is secure

 - The details of the next-counter function are unimportant;
 - That function does not provide any security properties other than the uniqueness of the inputs to the block cipher.

- Design a different \(\text{next}() \) to “fix” GCM?
Requirements of \(next() \)

1. Cyclic permutation with one circle
 ▶ non-repeating
Requirements of \textit{next()}

1. Cyclic permutation with one circle
 ▶ non-repeating
2. Number of solutions for
 \[\text{next}^r(f(x)) = g(x) \]
 should be as small as possible compared to
 \[\max\{\deg(f), \deg(g)\} \]
 ▶ To reduce counter collision probability
Requirements of \(\text{next}() \)

1. Cyclic permutation with one circle
 - non-repeating
2. Number of solutions for
 \[
 \text{next}^r(f(x)) = g(x)
 \]
 should be as small as possible compared to
 \[
 \max\{\text{deg}(f), \text{deg}(g)\}
 \]
 - To reduce counter collision probability
3. \(\text{next}^{r_1}(f(x)) = \text{next}^{r_2}(g(x)) \iff \text{next}^{r_1 \oplus r_2}(f(x)) = g(x) \)
 - e.g., \(f(x) \oplus r_1 = g(x) \oplus r_2 \iff f(x) \oplus (r_1 \boxplus r_2) = g(x) \)
 - to keep the original proofs largely unchanged
Designing \(\text{next()} \)

Consider the two basic operations that won’t increase degrees of \(f(x) \) and \(g(x) \)

\>

- addition, i.e. XOR
Designing \textit{next()}

Consider the two basic operations that won’t increase degrees of $f(x)$ and $g(x)$

- addition, i.e. XOR
 - not a permutation
Designing $\textit{next}()$

Consider the two basic operations that won’t increase degrees of $f(x)$ and $g(x)$

- addition, i.e. XOR
 - not a permutation
 - unless defined as $\text{next}(N, r) = N \oplus r$, with r as another input
Consider the two basic operations that won’t increase degrees of $f(x)$ and $g(x)$

- addition, i.e. XOR
 - not a permutation
 - unless defined as $\text{next}(N, r) = N \oplus r$, with r as another input
 - but $f \oplus r_1 = g \oplus r_2 \implies f \oplus (r_1 \ominus r_2) = g$
 - e.g., $f \oplus 2 = g \oplus 1 \implies f \oplus (2 \ominus 1) = f \oplus 1 = g$
Consider the two basic operations that won’t increase degrees of $f(x)$ and $g(x)$

- addition, i.e. XOR
 - not a permutation
 - unless defined as $\text{next}(N, r) = N \oplus r$, with r as another input
 - but $f \oplus r_1 = g \oplus r_2 \implies f \oplus (r_1 \otimes r_2) = g$
 - e.g., $f \oplus 2 = g \oplus 1 \implies f \oplus (2 \otimes 1) = f \oplus 1 = g$

- multiplication, by a constant
 - multiplying with a primitive element w
Designing \textit{next()} \\

Consider the two basic operations that won’t increase degrees of $f(x)$ and $g(x)$

- addition, i.e. XOR
 - not a permutation
 - unless defined as $\text{next}(N, r) = N \oplus r$, with r as another input
 - but $f \oplus r_1 = g \oplus r_2 \implies f \oplus (r_1 \sqcap r_2) = g$
 - e.g., $f \oplus 2 = g \oplus 1 \implies f \oplus (2 \sqcap 1) = f \oplus 1 = g$

- multiplication, by a constant
 - multiplying with a primitive element w
 - $w^{r_1}f = w^{r_2}g \implies w^{r_1\sqcap r_2}f = g$
Consider the two basic operations that won’t increase degrees of \(f(x) \) and \(g(x) \)

- addition, i.e. XOR
 - not a permutation
 - unless defined as \(\text{next}(N, r) = N \oplus r \), with \(r \) as another input
 - but \(f \oplus r_1 = g \oplus r_2 \implies f \oplus (r_1 \Box r_2) = g \)
 - e.g., \(f \oplus 2 = g \oplus 1 \implies f \oplus (2 \Box 1) = f \oplus 1 = g \)

- multiplication, by a constant
 - multiplying with a primitive element \(w \)
 - \(w^{r_1} f = w^{r_2} g \implies w^{r_1 \Box r_2} f = g \)
 - cyclic permutation with two cycles
 - \(\{1, w, w^2, \ldots, w^{2^n-2}\} \), and \(\{0\} \)
Merging Two Circles into One

\[L_w(x) = \begin{cases}
0 & \text{if } x = w^{2^n-2}, \\
1 & \text{if } x = 0, \\
w \cdot x & \text{otherwise.}
\end{cases} \]
Merging Two Circles into One

\[
L_w(x) = \begin{cases}
0 & \text{if } x = w^{2^n-2}, \\
1 & \text{if } x = 0, \\
w \cdot x & \text{otherwise}.
\end{cases}
\]

- \(L_w(x)\) is full-cycle permutation
Merging Two Circles into One

\[L_w(x) = \begin{cases}
0 & \text{if } x = w^{2^n-2}, \\
1 & \text{if } x = 0, \\
w \cdot x & \text{otherwise.}
\end{cases} \]

- \(L_w(x) \) is full-cycle permutation
- \(L_{w}^{r_1}(f(x)) = L_{w}^{r_2}(g(x)) \iff L_{w}^{r_1 \Box r_2}(f(x)) = g(x) \)
Merging Two Circles into One

\[L_w(x) = \begin{cases}
0 & \text{if } x = w^{2^n-2}, \\
1 & \text{if } x = 0, \\
w \cdot x & \text{otherwise.}
\end{cases} \]

- \(L_w(x) \) is full-cycle permutation
- \(L_{r_1}^w(f(x)) = L_{r_2}^w(g(x)) \iff L_{r_1}^w \ominus_{r_2}(f(x)) = g(x) \)
- Next, to investigate the number of solutions for

\[L_w^r(f(x)) = g(x) \]
\[L^r_w(f(x)) = g(x) \]

1. If \(f(x) = 0 \),
 1.1 If \(L^r_w(f(x)) = 0 \), then \(g(x) = 0 \).
\[L_w^r(f(x)) = g(x) \]

1. If \(f(x) = 0 \),
 1.1 If \(L_w^r(f(x)) = 0 \), then \(g(x) = 0 \).
 1.2 If \(L_w^r(f(x)) \neq 0 \), then \(g(x) = w^{r-1} \).
\[L^r_w(f(x)) = g(x) \]

1. If \(f(x) = 0 \),
 1.1 If \(L^r_w(f(x)) = 0 \), then \(g(x) = 0 \).
 1.2 If \(L^r_w(f(x)) \neq 0 \), then \(g(x) = w^{r-1} \).
2. If \(f(x) \neq 0 \),
 2.1 If \(L^r_w(f(x)) = 0 \), then \(g(x) = 0 \).
\[L^r_w(f(x)) = g(x) \]

1. If \(f(x) = 0 \),
 1.1 If \(L^r_w(f(x)) = 0 \), then \(g(x) = 0 \).
 1.2 If \(L^r_w(f(x)) \neq 0 \), then \(g(x) = w^{r-1} \).
2. If \(f(x) \neq 0 \),
 2.1 If \(L^r_w(f(x)) = 0 \), then \(g(x) = 0 \).
 2.2 If \(L^r_w(f(x)) \neq 0 \), let \(f(x) = w^{r_1} \) and \(L^r_w(f(x)) = w^{r_2} \), where \(0 \leq r_1, r_2 < 2^n - 1 \). Then we have
 2.2.1 If \(r_1 \leq r_2 \), then \(w^r f(x) = g(x) \).
 2.2.2 If \(r_1 > r_2 \), then \(w^{r-1} f(x) = g(x) \).
\[L_w^r(f(x)) = g(x) \]

1. If \(f(x) = 0 \),
 1.1 If \(L_w^r(f(x)) = 0 \), then \(g(x) = 0 \).
 1.2 If \(L_w^r(f(x)) \neq 0 \), then \(g(x) = w^{r-1} \).
2. If \(f(x) \neq 0 \),
 2.1 If \(L_w^r(f(x)) = 0 \), then \(g(x) = 0 \).
 2.2 If \(L_w^r(f(x)) \neq 0 \), let \(f(x) = w^{r_1} \) and \(L_w^r(f(x)) = w^{r_2} \), where \(0 \leq r_1, r_2 < 2^n - 1 \). Then we have
 2.2.1 If \(r_1 \leq r_2 \), then \(w^r f(x) = g(x) \).
 2.2.2 If \(r_1 > r_2 \), then \(w^{r-1} f(x) = g(x) \).

\(x \) must be a root of one of

\[
\begin{align*}
g(x) &= 0, \\
g(x) &= w^{r-1}, \\
w^r f(x) &= g(x), \\
w^{r-1} f(x) &= g(x).
\end{align*}
\]

So \(\#\text{solutions} \leq 4 \cdot (\max\{\deg(f), \deg(g)\}) \).
LGCM – Revised GCM

- Replacing \(\oplus 1\) by \(L_w\)

\[
\begin{align*}
N_0 &= \text{GHASH}_H(\text{IV}) \\
N_i &= L_w^i(N_0)
\end{align*}
\]

- The upper bound of counter collision will decrease
 - from \(2^{22}d\) to \(2^d\)

- Tighten the bounds of GCM by around \(2^{20}\) (1 million) times
 - Both privacy and authenticity
For Timing-based Side-channel

\[L_w(x) = \begin{cases}
0 & \text{if } x = w^{2n-2}, \\
1 & \text{if } x = 0, \\
w \cdot x & \text{otherwise.}
\end{cases} \]

can change to

\[y = w \cdot x, \]

\[L_w(x) = \begin{cases}
1 & \text{if } y = 0, \\
0 & \text{if } y = 1, \\
y & \text{otherwise.}
\end{cases} \]
Outline

Intro to Galois/Counter Mode

Repairing Galois/Counter Mode
 The flaw in GCM’s proofs discovered by Iwata et al.
 A fix to GCM’s security proofs and bounds

Simeck: A Simple Authenticated Cipher Design
 Design Rationales
 Specifications

Summery and Future Work
Simeck: An Authenticated Cipher Design

- LGCM + a lightweight block cipher
Simeck: An Authenticated Cipher Design

- LGCM + a lightweight block cipher
- Specs of the block cipher in one tweet (140 chars)

```
#define S(x,r)((x<<r)|(x>>(64-r)))
#define R(l,r,k)=S(l,5)&d^S(l,1)^k;r^=l;l^=r;
#define E(l,r,j,k)for(int i=0;i<32;)
{R(j,k,i++);R(l,r,k);}
```

- *tweetcipher* designed by Aumasson needs 6 tweets
Revisiting CM to Repair GCM, and Simeck

```c
int main(int _char**v) { uint64_t x[16], i; c = 'v[1]'; LOOP(16)
x[i] = *(0x7477697468617369ULL); LOOP(4) x[i] = W(v[2],i); LOOP(2)

AXR(a,b,d,16) AXR(c,d,b,11) #define ROUNDS {for(r=6;s--) 
{LOOP(4) G(i,i+4,i+8,i+12) LOOP(4) G(i,i+1)%4+4,(i+2)%4+8, 
(i+3)%4+12)}

#define R(v,n)((v<<(64-n))((v)>>n)) #define AXR(a,b,c,r)
x[a] = x[b]; x[c] = R[x[c]*x[a],r]; #define G(a,b,c,d) (AXR(a,b,d,32)
AXR(c,d,b,25)
```

#include <stdint.h> #include <stdio.h> #define LOOP(n)
for(i=0;i<n;++i) #define W(v,n) ((uint64_t*)v)[n]
Consider the two block ciphers designed by Beaulieu et al. from NSA:
- hardware-optimized cipher Simon
- software-optimized cipher Speck
Consider the two block ciphers designed by Beaulieu et al. from NSA

- hardware-optimized cipher Simon
- software-optimized cipher Speck

Design comparisons

- Round function, both Feistel-like network
 - Simon Use AND for efficiency of hardware
 - Speck ARX construction; decryption cannot reuse encryption functions
Consider the two block ciphers designed by Beaulieu et al. from NSA

- hardware-optimized cipher Simon
- software-optimized cipher Speck

Design comparisons

- Round function, both Feistel-like network
 - Simon: Use AND for efficiency of hardware
 - Speck: ARX construction; decryption cannot reuse encryption functions

- Key schedule
 - Simon: Linear operations with constant sequences
 - Speck: Cleverly reuse round function
Consider the two block ciphers designed by Beaulieu et al. from NSA
- hardware-optimized cipher Simon
- software-optimized cipher Speck

Design comparisons
- Round function, both Feistel-like network
 - Simon: Use AND for efficiency of hardware
 - Speck: ARX construction; decryption cannot reuse encryption functions
- Key schedule
 - Simon: Linear operations with constant sequences
 - Speck: Cleverly reuse round function

How about we combine them two?
Simeck = Simon + Speck

- Combine the efficient designs
 - Round function of Simon
 - Key schedule of Speck

- Minimal design
 - Keep the design as simple as possible
 - If we could find attacks on the mini design
 - Get attacks on Simon and/or Speck
 - or understand more about Simon and Speck
 - Get a fairly good authenticated cipher design if no serious attack is found
Simeck Round function

Simplified from Simon

- Remove S^1
- Change S^8 to S^5, S^2 to S^1

The left image is from the Simon and Speck design paper.
Simeck Key Schedule

Learn from Speck

The image is from the Simon and Speck design paper.
Parameters and Performance

- 128-bit block cipher, compatible with LGCM
- 128/196/254 bits for master keys
- 32/48/64 rounds for security-levels
Parameters and Performance

- 128-bit block cipher, compatible with LGCM
- 128/196/254 bits for master keys
- 32/48/64 rounds for security-levels
- Hardware implementation
 - Reuse the round function in key schedule
 - Less bits of rotations
 - Smaller footprint than hardware-optimized Simon
- Software implementation
 - Comparable software performance with software-oriented Speck
 - Decryption can reuse encryption round function
 - Small code size (ROM) for software
 - Compact and clean specification (in one tweet!)
 - Ideal for "lazy" programmers
- Neither Simon, nor Speck can fit into 140 chars
Parameters and Performance

- 128-bit block cipher, compatible with LGCM
- 128/196/254 bits for master keys
- 32/48/64 rounds for security-levels
- Hardware implementation
 - Reuse the round function in key schedule
 - Less bits of rotations
 - Smaller footprint than hardware-optimized Simon
- Software implementation
 - Comparable software performance with software-oriented Speck
 - Decryption can reuse encryption round function
 - Small code size (ROM) for software
Parameters and Performance

- 128-bit block cipher, compatible with LGCM
- 128/196/254 bits for master keys
- 32/48/64 rounds for security-levels
- Hardware implementation
 - Reuse the round function in key schedule
 - Less bits of rotations
 - Smaller footprint than hardware-optimized Simon
- Software implementation
 - Comparable software performance with software-oriented Speck
 - Decryption can reuse encryption round function
 - Small code size (ROM) for software
- Compact and clean specification (in one tweet!)
 - Ideal for “lazy” programmers
 - Neither Simon, nor Speck can fit into 140 chars
Outline

Intro to Galois/Counter Mode

Repairing Galois/Counter Mode
The flaw in GCM’s proofs discovered by Iwata et al.
A fix to GCM’s security proofs and bounds

Simeck: A Simple Authenticated Cipher Design
Design Rationales
Specifications

Summery and Future Work
Summery and Future Work

- **Repairing GCM**
 - Merging two cycles by L_w
 - Consider cyclic permutation polynomials?
 - Redo proofs and recompute bounds with other fixes?

- **Designing Simeck**
 - Ideas/designs from Simon and Speck
 - To attack Simeck?
 - More efficient mode of operation than GCM?
Thanks for your attention!