
Information Security Group

Authenticated Encryption in TLS
Kenny Paterson

DIAC 2013

2

Outline

•  TLS and the TLS Record Protocol
•  Theory for TLS
•  Attacks:
•  The BEAST
•  Padding oracles
•  Lucky 13
•  (More theory for TLS)
•  RC4 attack
•  CRIME/BREACH

•  Discussion

3

TLS

•  SSL = Secure Sockets Layer.
–  Developed by Netscape in mid 1990s.
–  SSLv3 still widely supported.

•  TLS = Transport Layer Security.
–  IETF-standardised version of SSL.
–  TLS 1.0 in RFC 2246 (1999).
–  TLS 1.1 in RFC 4346 (2006).
–  TLS 1.2 in RFC 5246 (2008).

4

TLS – Why You Should Care

•  Originally for secure e-commerce, now used
much more widely.
–  Retail customer access to online banking facilities.
–  Access to gmail, facebook, Yahoo, etc.
–  Mobile applications, including banking apps.
–  Payment infrastructures.

•  TLS has become the de facto secure protocol of
choice.
–  Used by hundreds of millions of people and devices

every day.
–  A serious attack could be catastrophic, both in real

terms and in terms of perception/confidence.

TLS Protocol Architecture

TCP

Record Protocol

Handshake
Protocol

Alert
Protocol

HTTP,
other apps

Change
Cipher
Spec

Protocol

5

6

TLS Record Protocol

•  TLS Record Protocol provides:
–  Data origin authentication, integrity using a MAC.
–  Confidentiality using a symmetric encryption

algorithm.
–  Anti-replay using sequence numbers protected by

the MAC.
–  Optional compression.
–  Fragmentation and reassembly of application layer

messages.

•  Keys for the algorithms are supplied by the TLS
Handshake Protocol.

MAC

SQN || HDR Payload

Padding

Encrypt

Ciphertext

MAC tag Payload

HDR

TLS Record Protocol: MAC-Encode-Encrypt

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

7

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

8

AE and TLS

•  Dedicated Authenticated Encryption (AE) schemes are
supported in TLS 1.2.
–  AES-GCM specified in RFC 5288.
–  AES-CCM specified in RFC 6655.

•  But TLS 1.2 is not yet widely supported.
–  Most browsers support SSLv3 and TLS 1.0 only.
–  Currently, roughly 50/50 usage split between CBC-mode and RC4.
–  Less than 15% of servers support TLS 1.1 or higher (source: SSL

Pulse).
–  [29% of servers still support SSLv2!]

•  In the rest of the talk, we focus on CBC-mode and RC4.

9

TLS Record Protocol Features

•  Sequence number is 64 bits in size and is incremented for
each new message.

•  Sequence number not transmitted as part of message.
–  Each end of connection maintains its own view of the current value

of the sequence number.
–  TLS is reliant on TCP to deliver messages in order.

•  Wrong sequence number leads failure of MAC verification
–  A fatal error leading to session teardown.

•  Creates stateful encryption scheme.
–  Preventing replay, insertion, reordering attacks,…

10

Outline

•  TLS and the TLS Record Protocol
•  Theory for TLS
•  Attacks:
•  The BEAST
•  Padding oracles
•  Lucky 13
•  (More theory for TLS)
•  RC4 attack
•  CRIME/BREACH

•  Discussion

11

Theory for TLS

•  TLS employs a (stateful) MAC-then-encrypt composition.

•  This is known to be not generically secure, according to
results of [BN00].
–  We can construct an IND-CPA secure encryption scheme and a

SUF-CMA secure MAC scheme for which the MAC-then-encrypt
composition fails to be IND-CCA secure.

11

12

Theory for TLS

•  Building on results of Krawczyk [K01], the basic MAC-
then-encrypt construction can be shown to be IND-CCA
secure for the special case of CBC mode encryption.

–  Even better, for CBC mode encryption, the composition is both
IND-CPA and INT-CTXT secure, i.e. AE-secure.

–  INT-CTXT: hard to forge a new, valid ciphertext, having seen
many ciphertexts for chosen messages.

•  This extends to the stateful setting, as formalised in
[BKN03].

•  AE security also holds for RC4 under the assumption
that its output is pseudorandom.

12

13

Theory for TLS – Caveats

•  Krawczyk’s analysis assumes random IVs for CBC
mode.
–  SSL 3.0 and TLS 1.0 use chained IVs.

•  TLS is really using MAC-Encode-Encrypt.
–  With a specific padding scheme for the Encode step.
–  But padding is not treated in the analysis of [K01].
–  Data is assumed to be block-aligned, and MAC size = block size.

•  RC4 has known statistical weaknesses.

•  Do these gaps between theory and reality matter?

13

14

Outline

•  TLS and the TLS Record Protocol
•  Theory for TLS
•  Attacks:
•  The BEAST
•  Padding oracles
•  Lucky 13
•  (More theory for TLS)
•  RC4 attack
•  CRIME/BREACH

•  Discussion

15

CBC Mode in TLS

•  SSLv3 and TLS 1.0
use a chained IV in
CBC mode.
–  IV for current message

is the last ciphertext
block from the previous
message.

•  Modified in TLS 1.1,
1.2.
–  TLS 1.2 now has explicit

IV and recommends IV
SHOULD be chosen at
random for each
message.

Ci-1 Ci

Pi-1 Pi

dK dK

Pi-1 Pi

Ci-1 Ci

eK eK

15

16

Attacking Predictable IVs

•  IV chaining in SSLv3 and TLS 1.0 leads to a
chosen-plaintext distinguishing attack against
TLS.
–  First observed for CBC mode by Rogaway in 1995.
–  Then applied to TLS by Dai and Moeller in 2004.
–  Extended to theoretical plaintext recovery attack by

Bard in 2004/2006.
–  Turned into a practical plaintext recovery attack by

Duong and Rizzo in 2011.
–  The BEAST!

Browser

TLS tunnel
Cookie

for
remote

site

17

The BEAST and client-side malware

17

18

The BEAST

•  Key points:
-  BEAST malware injected ahead of time into client browser.
-  Achieves chosen-plaintext capability for TLS encryption.
-  Uses HTTP padding to control positions of unknown bytes.
-  Communicates with MITM attacker.
-  It works.

•  Malware can also initiate its own TLS sessions to remote
host.
-  Browser will then automatically inject HTTP cookies into TLS

session on behalf of malware.
-  Enables multi-session attacks targeting HTTP cookies.
-  More later!

18

19

The BEAST – Countermeasures

•  Switch to using TLS 1.1 or 1.2.
-  Uses random IVs, so attack prevented.

•  For TLS 1.0 users:
-  Use 1/n-1 record splitting.

-  Now implemented in most but not all browsers.
-  Safari (Apple): status unknown.

-  Send 0-length dummy record ahead of each real
record.
-  Breaks some implementations.

-  Switch to using RC4.
-  As recommended by many expert commentators.

19

20

Outline

•  TLS and the TLS Record Protocol
•  Theory for TLS
•  Attacks:
•  The BEAST
•  Padding oracles
•  Lucky 13
•  (More theory for TLS)
•  RC4 attack
•  CRIME/BREACH

•  Discussion

MAC

SQN || HDR Payload

Padding

Encrypt

Ciphertext

MAC tag Payload

HDR

TLS Record Protocol: MAC-Encode-Encrypt

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

21

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

22

TLS and Padding Oracles

[V02,CHVV03]:
•  Specifics of TLS padding format can be

exploited to mount a plaintext recovery attack.
•  No chosen-plaintext requirement.
•  The attack depends on being able to distinguish

good from bad padding.
–  In practice, this is done via a timing side-channel.
–  The MAC is only checked if padding good, and the

MAC is always bad in the attack.
–  Distinguish cases by timing TLS error messages.

23

TLS and Padding Oracles

[V02,CHVV03]:
•  The attack is multi-session.

–  Each trial in the attack causes a fatal error and TLS
session termination.

–  The attack still works if a fixed plaintext is repeated in a
fixed location across many TLS sessions.

–  e.g. a password in an automated login.
–  Modern viewpoint: use BEAST-style malware and target

HTTP cookies.
•  Attack worked for OpenSSL.

–  Roughly 2ms difference for long messages.
–  Enabling recovery of TLS-protected Outlook passwords in

about 3 hours.

24

Countermeasures?

•  Redesign TLS:
–  Pad-MAC-Encrypt or Pad-Encrypt-MAC.
–  Too invasive, did not happen.

•  Switch to RC4.

•  Or add a fix to ensure uniform errors?
–  If attacker can’t tell difference between MAC and pad

errors, then maybe TLS’s MEE construction is
secure?

–  So how should TLS implementations ensure uniform
errors?

25

Ensuring Uniform Errors

From the TLS 1.2 specification:

…implementations MUST ensure that record processing
time is essentially the same whether or not the padding is
correct.

In general, the best way to do this is to compute the MAC
even if the padding is incorrect, and only then reject the
packet.

Compute the MAC on what though?

 25

26

Ensuring Uniform Errors

For instance, if the pad appears to be incorrect, the
implementation might assume a zero-length pad and then
compute the MAC.

•  This approach is adopted in many implementations,

including OpenSSL, NSS (Chrome, Firefox),
BouncyCastle, OpenJDK, …

•  One alternative (GnuTLS and others) is to remove as
many bytes as are indicated by the last byte of plaintext
and compute the MAC on what’s left.

26

27

Ensuring Uniform Errors

… This leaves a small timing channel, since MAC
performance depends to some extent on the size of the
data fragment, but it is not believed to be large enough to
be exploitable, due to the large block size of existing MACs
and the small size of the timing signal.

27

28

Ensuring Uniform Errors

… This leaves a small timing channel, since MAC
performance depends to some extent on the size of the
data fragment, but it is not believed to be large enough to
be exploitable, due to the large block size of existing MACs
and the small size of the timing signal.

28

29

Outline

•  TLS and the TLS Record Protocol
•  Theory for TLS
•  Attacks:
•  The BEAST
•  Padding oracles
•  Lucky 13
•  (More theory for TLS)
•  RC4 attack
•  CRIME/BREACH

•  Discussion

30

Lucky 13 [AP13]

•  Distinguishing attacks and full plaintext recovery
attacks against TLS-CBC implementations
following the advice in the TLS 1.2 spec.
–  And variant attacks against those that do not.

•  Applies to all versions of SSL/TLS.
–  SSLv3.0, TLS 1.0, 1.1, 1.2.
–  And DTLS.

•  Demonstrated in the lab against OpenSSL and
GnuTLS.

31

Lucky 13 – Plaintext Recovery

XOR 2-byte Δ here
and submit for decryption

Produces valid
patterns “01 01”

or “00”,
OR bad pad.

31

Ct

Pt

dK

Ct-1

dK

R2 R1

dK dK

IV

(HMAC-SHA-1 + AES-CBC)

32

Case: “01 01” (or longer valid pad)

XOR 2-byte Δ here
and submit for decryption

32

Ct

Pt

dK

Ct-1

dK

R2 R1

dK dK

IV

SQN||HDR

13 + 16 + 16 + 10 = 55 bytes 20 bytes

4 SHA-1 compression
function evaluations

“01 01”
(or longer
valid pad)

33

Case: “00”

XOR 2-byte Δ here
and submit for decryption

33

Ct

Pt

dK

Ct-1

dK

R2 R1

dK dK

IV

SQN||HDR

56 bytes 20 bytes

5 SHA-1 compression
function evaluations

“00”

34

Case: Bad padding

XOR 2-byte Δ here
and submit for decryption

34

Ct

Pt

dK

Ct-1

dK

R2 R1

dK dK

IV

SQN||HDR

57 bytes 20 bytes

5 SHA-1 compression
function evaluations

zero-length
pad

35

Lucky 13 – Plaintext Recovery

•  The injected ciphertext causes bad padding and/or a bad
MAC.
–  This leads to a TLS error message, which the attacker times.

•  There is a timing difference between “01 01” case and
the other 2 cases.
–  A single SHA-1 compression function evaluation.
–  Roughly 1000 clock cycles, 1µs range on typical processor.
–  Measurable difference on same host, LAN, or a few hops away.

•  Detecting the “01 01” case allows last 2 plaintext bytes in
the target block Ct to be recovered.
–  Using the standard CBC algebra.
–  Attack then extends easily to all bytes.

35

36

Lucky 13 – Attack Cost

•  We need 216 attempts to try all 2-byte Δ values.

•  And we need around 27 trials for each Δ value to reliably
distinguish the different events.
–  Noise level depends on experimental set-up.

•  Each trial kills the TLS session.

•  Hence the headline attack cost is 223 sessions, all
encrypting the same plaintext.

•  So what was all the fuss about?
36

37

Lucky 13 – Improvements

•  If 1-out-of-2 last bytes known, then we only need 28
attempts per byte.

•  If the plaintext is base64 encoded, then we only need 26
attempts per byte.
–  And 27 trials per attempt to de-noise, for a total of 213.

•  BEAST-style attack targeting HTTP cookies.
–  Malicious client-side Javascript makes HTTP GET requests.
–  TLS sessions are automatically generated and HTTP cookies

attached.
–  Pad GET requests so that 1-out-of-2 condition always holds.
–  Cost of attack is 213 GET requests per byte of cookie.
–  Now a practical attack!

37

38

Experimental Results

•  Byte 14 of plaintext set to 01; byte 15 set to FF.
•  OpenSSLv1.0.1 on server running at 1.87Ghz.
•  100 Mbit LAN.
•  Median times (noise not shown). 38

Ha
rd

wa
re

Cy
cl

es
�Cal

cu
la

te
d
by

Ad
ve

rs
ar

y⇥

⇥15 � 0xFE

0 50 100 150 200 250
1.286⇤106

1.287⇤106

1.288⇤106

1.289⇤106

1.290⇤106

1.291⇤106

1.292⇤106

�15

39

Experimental Results

OpenSSL: recovering last byte in a block, using percentile test to
extract correct byte value, no assumptions on plaintext.

39

S
u
c
c
e
s
s
P
r
o
b
a
b
i
l
i
t
i
e
s

ÊÊÊÊÊÊÊÊ Ê Ê Ê
Ê Ê

Ê
Ê Ê Ê Ê Ê Ê Ê Ê

Ê Ê Ê
‡‡‡‡‡‡‡‡ ‡ ‡

‡

‡

‡
‡ ‡

‡ ‡ ‡ ‡
‡
‡
‡
‡
‡
‡ÏÏÏÏÏÏÏÏ Ï

Ï

Ï

Ï

Ï
Ï Ï

Ï Ï Ï
Ï
Ï
Ï
Ï

Ï
Ï
ÏÚÚÚÚÚÚÚÚ Ú

Ú

Ú

Ú

Ú
Ú Ú

Ú Ú Ú
Ú
Ú
Ú

Ú

Ú

Ú
ÚÙÙÙÙÙÙÙÙ Ù

Ù

Ù

Ù
Ù Ù Ù Ù Ù Ù Ù Ù

Ù

Ù

Ù

Ù
ÙÁ

ÁÁÁÁÁÁÁ Á

Á

Á

Á
Á Á Á Á Á Á Á Á Á

Á

Á

Á Á
0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Á 217 Trials HL=29L
Ù 216 Trials HL=28L
Ú 215 Trials HL=27L
Ï 214 Trials HL=26L
‡ 213 Trials HL=25L
Ê 212 Trials HL=24L

Percentiles

40

Lucky 13 – Further Extensions

•  The attack extends to other MAC algorithms.
–  Nice interplay between block-size, MAC tag size and 13-byte field

SQN || HDR.

•  The attack extends to other methods for dealing with bad

padding.
–  e.g. as in GnuTLS, faster but partial plaintext recovery.

•  [The attack can be applied to DTLS.
–  No error messages, but simulate these via DTLS Heartbeats.
–  Errors non-fatal, so can execute attack in a single session.
–  Cam amplify timing differences using AlFardan-Paterson

techniques (NDSS 2012).]
40

41

Lucky 13 – Impact

•  OpenSSL patched in versions 1.0.1d, 1.0.0k and 0.9.8y, released
05/02/2013.

•  NSS (Firefox, Chrome) patched in version 3.14.3, released
15/02/2013.

•  Opera patched in version 12.13, released 30/01/2013
•  Oracle released a special critical patch update of JavaSE,

19/02/2013.
•  BouncyCastle patched in version 1.48, 10/02/2013
•  Also GnuTLS, PolarSSL, CyaSSL, MatrixSSL.
•  Microsoft “determined that the issue had been adequately

addressed in previous modifications to their TLS and DTLS
implementation”.

•  Apple: status unknown.

 (Full details at: www.isg.rhul.ac.uk/tls/lucky13.html)
41

42

Lucky 13 – Countermeasures

•  We really need constant-time decryption for TLS-CBC.

•  Add dummy hash compression function computations when
padding is good to ensure total is the same as when padding
is bad.

•  Add dummy padding checks to ensure number of iterations
done is independent of padding length and/or correctness of
padding.

•  Watch out for length sanity checks too.
–  Need to ensure there’s enough space for some plaintext after

removing padding and MAC, but without leaking any information
about amount of padding removed.

•  TL;DR:
–  It’s a bit of a nightmare.

42

43

Performance of Countermeasures

43

Pr
ob

ab
il

it
y

1.50�106 1.51�106 1.52�106 1.53�106 1.54�106 1.55�106 1.56�106 1.57�106
0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

Hardware Cycles �Calculated by Attacker⇥
Pr

ob
ab

il
it

y

1.54�106 1.55�106 1.56�106 1.57�106 1.58�106 1.59�106 1.60�106 1.61�106
0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

Hardware Cycles �Calculated by Attacker⇥

Before After

44

Outline

•  TLS and the TLS Record Protocol
•  Theory for TLS
•  Attacks:
•  The BEAST
•  Padding oracles
•  Lucky 13
•  (More theory for TLS)
•  RC4 attack
•  CRIME/BREACH

•  Discussion

Theorem ([PRS11], informal statement)
Suppose E is a block cipher with block size n that is sprp-secure.
Suppose MAC has tag size t and is prf-secure.
Suppose that for all messages M queried by the adversary:

 |M| + t ≥ n.

Then MEE with CBC mode encryption, random IVs, TLS padding, and
uniform errors is (LH)AE secure.

More Theory for TLS

C0 C1

eK

C2

eK

C3

eK

45

46

Other Lucky 13 Countermeasures?

•  Introduce random delays during decryption.
–  Surprisingly ineffective, analysis in [AP13].

•  Redesign TLS:

–  Pad-MAC-Encrypt or Pad-Encrypt-MAC.
–  Currently, some discussion on TLS mailing lists.
–  No easy deployment route, seems unlikely to happen.

•  Switch to TLS 1.2
–  Has support for AES-GCM and AES-CCM.

•  Use RC4.

47

Outline

•  TLS and the TLS Record Protocol
•  Theory for TLS
•  Attacks:
•  The BEAST
•  Padding oracles
•  Lucky 13
•  (More theory for TLS)
•  RC4 attack
•  CRIME/BREACH

•  Discussion

48

RC4

48

•  The RC4 stream cipher has long been known to have
statistical weaknesses.
-  e.g. Mantin-Shamir bias, recent work of Maitra et al., Isobe et al.
-  Most attention has been given to the initial few bytes of

keystream.
-  The focus has been on finding and giving theoretical

explanations for individual biases, and on key-recovery attacks.

•  Usual countermeasure is to discard the initial bytes of
keystream and use only “good” bytes.

•  So what does RC4 in TLS do?

49

RC4 in TLS

49

•  TLS does not discard bytes!
•  Because it hurts performance too much;
•  The biases are small anyway; and only exist in the first few

bytes.

•  [ABPPS13]: we estimated the biases in the first 256
output bytes by sampling RC4 keystreams for 245
random 128-bit keys.

•  We found many previously unreported biases of
significant size…
•  www.isg.rhul.ac.uk/tls/biases.pdf

50

Biases in byte 16 of RC4 Output

50

 0.003878

 0.00390625

 0.00395

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 255

Pr
ob

ab
ili

ty

Byte value [0...255]

Ciphertext distribution at position 16

51

Biases in byte 31 of RC4 Output

51

 0.003878

 0.00390625

 0.00395

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 255

Pr
ob

ab
ili

ty

Byte value [0...255]

Ciphertext distribution at position 31

52

Biases in byte 128 of RC4 Output

52

 0.003878

 0.00390625

 0.00395

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 255

Pr
ob

ab
ili

ty

Byte value [0...255]

Ciphertext distribution at position 128

53

TLS-RC4 Attack

53

•  These biases are large enough to enable plaintext recovery attacks
on first 256 bytes of TLS sessions.

•  Needs a multi-session attack.
•  BEAST-style malware as possible generation mechanism.

•  Attack using simple Bayesian technique:
-  For each byte position i:

 Ci = Pi ⊕ Ki
-  Many samples of Ci, so each guess for Pi induces a distribution on Ki.
-  Estimate likelihood of induced distribution using measured distribution

on Ki.
-  Select as correct plaintext byte the candidate Pi giving highest

likelihood.

54

Success probability: 224 sessions

54

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

55

Success probability: 226 sessions

55

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

56

Success probability: 228 sessions

56

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

57

Success probability: 230 sessions

57

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

58

Success probability: 232 sessions

58

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

59

Possible Attack Enhancements

•  Many sessions are needed.

•  The attack can only target the first 256 plaintext bytes.
–  Containing less interesting HTTP headers.

•  In [ABPPS13], we solved both problems using 2-byte
Fluhrer-McGrew biases.
–  Smaller biases, but persistent throughout keystream.
–  Arrange for HTTP session cookie to be repeatedly sent at

predictable locations in keystream.
–  Use Viterbi-style algorithm to do ML estimation of plaintext bytes.
–  Roughly 233 encryptions needed for reliable recovery.

59

60

Results for 2-byte Biases

60

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14"

x-axis: units of 230 encryptions.
Blue line: success rate for 16-byte plaintext recovery.
Red line: success rate for individual byte recovery.

61

TLS-RC4 Attack – Countermeasures

•  We can’t just discard initial output bytes without
updating all clients and servers simultaneously.
–  And this doesn’t help against 2-byte attacks anyway.

•  We had lots of discussion with vendors on ad
hoc measures for HTTP.
–  Randomisation.
–  Burn-off initial bytes via short messages.
–  Put limits on number of times cookies can be sent.

61

62

TLS-RC4 Attack – Impact

•  Fewer vendors have reacted publicly.
–  Google focussed on implementing TLS 1.2.
–  Microsoft disabled RC4 in Windows 8.1 Preview.
–  Opera has implemented cookie limit countermeasure.

•  Further details at: www.isg.rhul.ac.uk/tls

62

63

Outline

•  TLS and the TLS Record Protocol
•  Theory for TLS
•  Attacks:
•  The BEAST
•  Padding oracles
•  Lucky 13
•  (More theory for TLS)
•  RC4 attack
•  CRIME/BREACH

•  Discussion

64

CRIME/BREACH

•  Duong and Rizzo [DR12] found a way to exploit TLS’s
optional compression feature.
–  Similar to idea in 2002 paper by Kelsey.

•  Compression algorithms are stateful.
–  Replace repeated strings by shorter references to previous

occurrences.
•  Degree of compression obtained for chosen plaintext

reveals something about prior plaintexts!
•  This small amount of leakage can be boosted to get

plaintext recovery attack for HTTP cookies.
–  Using same chosen plaintext vector as for BEAST.

•  Countermeasures: disable compression; use variable
length padding.

•  BREACH: similar ideas, applied to HTTP compression.

65

Outline

•  TLS and the TLS Record Protocol
•  Theory for TLS
•  Attacks:
•  The BEAST
•  Padding oracles
•  Lucky 13
•  (More theory for TLS)
•  RC4 attack
•  CRIME/BREACH

•  Discussion

66

Where Do We Stand Currently?

•  Most TLS implementations now patched against BEAST.
•  Many TLS implementations patched against Lucky 13.
•  No simple TLS patch for RC4 attack.

–  Needs application-layer modifications.
•  Disable TLS compression to prevent CRIME.

–  Still issues with compression at application layer (BREACH).

•  We need TLS 1.2!
–  Use patched CBC-mode until we get it.
–  Other people advise differently.

•  Their logic is that BEAST-vulnerable browsers still exist, so less-broken RC4
is preferable.

66

67

Discussion

•  TLS’s ad hoc MAC-Encode-Encrypt construction is hard
to implement securely and hard to prove positive security
results about.
–  Long history of attacks and fixes.
–  Each fix was the “easiest option at the time”.
–  Now reached point where a 500 line patch to OpenSSL was

needed to fully eliminate the Lucky 13 attack.
–  Attacks show that small details matter.
–  The actual TLS-CBC construction was only fully analysed in

2011.

•  RC4 was known to be weak for many years.
–  Actual exploitation of weaknesses in a TLS context went

unexplored.
–  Needed multi-session mechanism (BEAST technology) to make

the attack plausible. 67

68

Discussion

•  Once a bad cryptographic choice is out there in
implementations, it’s very hard to undo.
–  Old versions of TLS hang around for a long time.
–  There is no TLS product recall programme!
–  Slow uptake of TLS 1.1, 1.2.

•  TLS is coming under sustained pressure from attacks.
–  BEAST, Lucky 13 and RC4 attacks are providing incentives to

move to TLS 1.2.
–  Attacks are “semi-practical” but we ignore such attacks at our

peril.
–  Good vendor response to Lucky 13, less so to RC4 attack.

•  One is fixable, the other not (really).

68

69

Lessons for CAESAR

•  Attacks really do improve with age.
–  BEAST (1995 – 2011), Lucky 13 (Feb. ’13 – Mar. ‘13).

•  Design AE schemes for a broad set of use-cases
and attack vectors.
–  Fixed-key, many-key (multi-session) attacks.
–  Chosen-plaintext, partially known-plaintext, …
–  Compression-based attacks?
–  Look carefully at error conditions and handling.

•  Be realistic about timescale for adoption in
already deployed systems.

69

70

Research Directions?

•  TLS Record Protocol cryptography has now been
heavily analysed.
–  Still some mileage in looking at AE implementations?

•  Major recent progress in analysing TLS Handshake
protocol.
–  [JKSS12], [KPW13].

•  Can still expect implementation issues to emerge.
–  Check the “OpenSSL Fact” twitter feed regularly!

•  Complex system of interacting protocols can still
throw up surprises.
–  Alert Protocol desynchronisation attack [BFKPS13].
–  TLS Renegotiation attack [RD09].

70

