Generating a Fixed Number of Masks with Word Permutations and XORs

Tetsu Iwata, Nagoya University
Kazuhiko Minematsu, NEC Corporation

DIAC 2013, Directions in Authenticated Ciphers
August 12, 2013, Chicago, USA
Overview

• Masks are frequently used in designs of blockcipher-based MACs and AEADs
• Some of them use many masks (the number depends on the input length)
 – Examples: PMAC (MAC), OCB (AEAD)
• Others use a fixed number of masks
 – Examples: CMAC (MAC), EAX (AEAD)
• In many cases, multiplications over GF(2^n) are used
 – Gray code, multiplications with a constant over a prime field,...
 – allow an easy and clean security proof
 – efficient
Overview

• We show that word permutations and XORs can be used to generate a fixed number of masks
 – can be more efficient depending on the environment
 • similar to a word-oriented LFSR
 – focus on CMAC and EAX
 – can be an option in your design

• [Note] A part of the results will appear in [MiLulw13]
 – this talk reviews the approach in [MiLulw13] and presents new concrete examples

Masks

• used to “tweak” the input of a blockcipher
 – often XOR is used
 – depends on the key
 – sometimes they are used for the output as well
OCB [RoBeBlKr01, Ro04, KrRo11]

\[\Delta \leftarrow \text{Init}(N)\]

\[\Delta \leftarrow \text{Inc}_1(\Delta) \quad \Delta \leftarrow \text{Inc}_2(\Delta) \quad \Delta \leftarrow \text{Inc}_3(\Delta)\]

\[\Delta \leftarrow \text{Inc}_m(\Delta) \quad \Delta \leftarrow \text{Inc}_3(\Delta)\]

- Gray code, XOR with a pre-computed value
- The number of masks depends on the input length
CMAC [NIST SP 800-38B]

- MAC, variable-input length PRF
- \(L = E_K(0^n) \)
- 2L: “doubling” of \(L \) in GF(2^n)
- 4L: 2(2L)
CMAC [NIST SP 800-38B]

- $X = 2L$, $Y = 4L$
Six Conditions on X and Y

• For any n-bit constant c and sufficiently small ε, if L is randomly chosen

\[
\begin{align*}
\Pr[X = c] & \leq \varepsilon \\
\Pr[Y = c] & \leq \varepsilon \\
\Pr[X \oplus Y = c] & \leq \varepsilon \\
\Pr[X \oplus L = c] & \leq \varepsilon \\
\Pr[Y \oplus L = c] & \leq \varepsilon \\
\Pr[X \oplus Y \oplus L = c] & \leq \varepsilon
\end{align*}
\]

• These six conditions are sufficient for CMAC being a secure PRF
Six Conditions on X and Y

- with $X=2L$ and $Y=4L$

\[
\begin{align*}
\Pr[X = c] & \leq \epsilon \\
\Pr[Y = c] & \leq \epsilon \\
\Pr[X \oplus Y = c] & \leq \epsilon \\
\Pr[X \oplus L = c] & \leq \epsilon \\
\Pr[Y \oplus L = c] & \leq \epsilon \\
\Pr[X \oplus Y \oplus L = c] & \leq \epsilon
\end{align*}
\]

\[
\begin{align*}
\Pr[2L = c] & \leq \epsilon \\
\Pr[4L = c] & \leq \epsilon \\
\Pr[6L = c] & \leq \epsilon \\
\Pr[3L = c] & \leq \epsilon \\
\Pr[5L = c] & \leq \epsilon \\
\Pr[7L = c] & \leq \epsilon
\end{align*}
\]

where $\epsilon = 1/2^n$
Breaking L into Words

• block length: n bits
• word length: w bits
• w=n/4 (e.g., (n,w)=(128,32), (64,16))
• L=(L₁,L₂,L₃,L₄)
• \(L_{[1..4]}=L₁ \oplus L₂ \oplus L₃ \oplus L₄\)

\[
\begin{align*}
X &= (L₂, L₃, L₄, L_{[1..4]}) \\
Y &= (L₃, L₄, L_{[1..4]}, L₁)
\end{align*}
\]
Breaking L into Words

- block length: n bits
- word length: w bits
- w=n/4 (e.g., (n,w)=(128,32), (64,16))
- L=(L₁,L₂,L₃,L₄)
- Lₜₜₜₜ = L₁ xor L₂ xor L₃ xor L₄

\[
\begin{align*}
X &= (L₂, L₃, L₄, Lₜₜₜₜ) \\
Y &= (L₃, L₄, Lₜₜₜₜ, L₁)
\end{align*}
\]

- It works
Breaking L into Words

\[
\begin{align*}
X &= (L_2, L_3, L_4, L_{[1..4]}) \\
Y &= (L_3, L_4, L_{[1..4]}, L_1)
\end{align*}
\]

\[
\begin{align*}
X &= \begin{bmatrix} L_1 & L_2 & L_3 & L_4 \end{bmatrix} \cdot M_X \\
Y &= \begin{bmatrix} L_1 & L_2 & L_3 & L_4 \end{bmatrix} \cdot M_Y
\end{align*}
\]

\[
M_X = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad \text{and} \quad M_Y = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}
\]

- M_X and M_Y are 4 x 4 matrices over GF\(2^{n/4}\)
- full rank
Breaking L into Words

\[
X \Rightarrow M_X \\
Y \Rightarrow M_Y \\
X \oplus Y \Rightarrow M_X \oplus M_Y \\
X \oplus L \Rightarrow M_X \oplus I \\
Y \oplus L \Rightarrow M_Y \oplus I \\
X \oplus Y \oplus L \Rightarrow M_X \oplus M_Y \oplus I
\]

\[
\begin{bmatrix}
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
\end{bmatrix}
\]

- All six matrices are full rank
- for each condition, one value of L satisfies the equality, \(\varepsilon = 1/2^n \)
Breaking L into Words

\[
\begin{align*}
X &= (L_2, L_3, L_4, L_{[1..4]}) \\
Y &= (L_3, L_4, L_{[1..4]}, L_1)
\end{align*}
\]

- with \((n+n/4)\)-bit memory
 - store \(L\) and \(L_{[1..4]}\)
 - masks are obtained by a word permutation only
- with \(n\)-bit memory
 - store \(L\)
 - masks are obtained by a word permutation and three XORs
EAX [BeRoWa04]

N (nonce) → CMAC[0] → N (IV for CTR) → CTR mode encryption → C (ciphertext) → CMAC[2] → CMAC[t]: tweaked CMAC

M (plaintext) → H (header) → CMAC[1] → T (tag)
Tweaked CMAC in EAX

CMAC[0], CMAC[1], CMAC[2]
Tweaked CMAC in EAX

$E_K(0^n)$
or
$E_K(0^{n-11})$
or
$E_K(0^{n-10})$

E_K E_K E_K E_K

CMAC[t]_K(M)

CMAC[0], CMAC[1], CMAC[2]
Tweaked CMAC in EAX

```
CMAC[K(M) || M[1] M[m-1] M[m] || 10...0]
```

\[E_K \]

A \ or \ B \ or \ C

CMAC[t]_K(M)
A, B, C, X, and Y Are Masks

- can be pre-computed and stored in memory to optimize the efficiency
 - three blockcipher calls for pre-computation
 - masks are sensitive information (should not be disclosed)
 - memory can be costly
 - resource constrained devices
 - EAX-prime [ANSI C12.22]
 - a slightly modified version of EAX
 - proposed to reduced the pre-computation complexity or memory cost
 - insecure
A, B, C, X, and Y Are Masks

- a fixed number of (five) masks
- desirable to efficiently obtain the five masks from a small amount of memory in any order
 - no need to sequentially generate them
 - unlike word-oriented LFSRs
Twenty Four Conditions [MiLulw13]

• A, B, C, X, Y are functions of L

• For any n-bit constant c and sufficiently small \(\varepsilon \), if L is randomly chosen

\[
\begin{align*}
\Pr[A = c] & \leq \varepsilon & \Pr[A \oplus Y = c] & \leq \varepsilon & \Pr[A \oplus C \oplus X = c] & \leq \varepsilon \\
\Pr[B = c] & \leq \varepsilon & \Pr[B \oplus C = c] & \leq \varepsilon & \Pr[B \oplus C \oplus X = c] & \leq \varepsilon \\
\Pr[C = c] & \leq \varepsilon & \Pr[B \oplus X = c] & \leq \varepsilon & \Pr[A \oplus B \oplus Y = c] & \leq \varepsilon \\
\Pr[X = c] & \leq \varepsilon & \Pr[B \oplus Y = c] & \leq \varepsilon & \Pr[A \oplus C \oplus Y = c] & \leq \varepsilon \\
\Pr[Y = c] & \leq \varepsilon & \Pr[C \oplus X = c] & \leq \varepsilon & \Pr[B \oplus C \oplus Y = c] & \leq \varepsilon \\
\Pr[A \oplus B = c] & \leq \varepsilon & \Pr[C \oplus Y = c] & \leq \varepsilon & \Pr[A \oplus B \oplus X \oplus Y = c] & \leq \varepsilon \\
\Pr[A \oplus C = c] & \leq \varepsilon & \Pr[X \oplus Y = c] & \leq \varepsilon & \Pr[A \oplus C \oplus X \oplus Y = c] & \leq \varepsilon \\
\Pr[A \oplus X = c] & \leq \varepsilon & \Pr[A \oplus B \oplus X = c] & \leq \varepsilon & \Pr[B \oplus C \oplus X \oplus Y = c] & \leq \varepsilon
\end{align*}
\]

• These twenty four conditions are sufficient for EAX being a secure AEAD
Case \(w=n/4 \) for EAX (1) [MiLuw13]

\[
\begin{align*}
A &= (L_1, L_2, L_3, L_4) \\
B &= (L_4, L_{[1..4]}, L_1, L_2) \\
C &= (L_{[1..4]}, L_1, L_2, L_3) \\
X &= (L_2, L_3, L_4, L_{[1..4]}) \\
Y &= (L_3, L_4, L_{[1..4]}, L_1)
\end{align*}
\]

- the first four elements of rotations of \((L_1, L_2, L_3, L_4, L_{[1..4]})\)
 - \(L=(L_1, L_2, L_3, L_4), \ L_{[1..4]}=L_1 \text{xor} \ L_2 \text{xor} \ L_3 \text{xor} \ L_4 \)
- All twenty four matrices are full rank
Case $w=n/4$ for EAX (1) [MiLu1w13]

\[
\begin{align*}
A &= (L_1, L_2, L_3, L_4) \\
B &= (L_4, L_{[1..4]}, L_1, L_2) \\
C &= (L_{[1..4]}, L_1, L_2, L_3) \\
X &= (L_2, L_3, L_4, L_{[1..4]}) \\
Y &= (L_3, L_4, L_{[1..4]}, L_1)
\end{align*}
\]

• with $(n+n/4)$-bit memory
 – store $L=E_K(0^n)$ and $L_{[1..4]}$
 – masks are obtained by a word permutation only

• with n-bit memory
 – store L
 – masks are obtained by a word permutation and three XORs
Case \(w = n/4 \) for EAX (2) [MiLuW13]

\[
\begin{align*}
A &= (L_1, L_2, L_3, L_4) \\
B &= (L_2, L_{1,2}, L_4, L_{3,4}) \\
C &= (L_{1,2}, L_1, L_{3,4}, L_3) \\
X &= (L_3, L_{3,4}, L_2, L_1) \\
Y &= (L_4, L_3, L_{1,2}, L_2)
\end{align*}
\]

- \(L_{[a,b]} = L_a \text{xor} \ L_b \)
- All twenty four matrices are full rank
- Searched for (limited) space, picked one that “looks good”
 - small memory to implement, small number of XORs
- X and Y can be used for CMAC as well
Case \(w=n/4 \) for EAX (2) [MiLuIw13]

\[
\begin{align*}
A &= (L_1, L_2, L_3, L_4) \\
B &= (L_2, L_{[1,2]}, L_4, L_{[3,4]}) \\
C &= (L_{[1,2]}, L_1, L_{[3,4]}, L_3) \\
X &= (L_3, L_{[3,4]}, L_2, L_1) \\
Y &= (L_4, L_3, L_{[1,2]}, L_2)
\end{align*}
\]

- with \((n+2 \times n/4)\)-bit memory

 - store \(L \) and \(L_{[1,2]} \) and \(L_{[3,4]} \)

 - masks are obtained by a word permutation only

- with \(n \)-bit memory

 - store \(L \)

 - masks are obtained by a word permutation and two XORs
So Far, \(w = n/4 \)

- \(w = n/4 \)
 - \((n,w)=(128,32), (64,16)\)

- \(w = n/8 \)
 - \((n,w)=(128,16), (64,8)\)

- \(w = n/16 \)
 - \((n,w)=(128,8)\)
Case \(w=n/8 \) for EAX (1)

\[
\begin{align*}
A &= (L_1, \ldots, L_8) \\
B &= (L_4, L_{[1..4]}, L_1, L_2, L_8, L_{[5..8]}, L_5, L_6) \\
C &= (L_{[1..4]}, L_1, L_2, L_3, L_{[5..8]}, L_5, L_6, L_7) \\
X &= (L_2, L_3, L_4, L_{[1..4]}, L_6, L_7, L_8, L_{[5..8]}) \\
Y &= (L_3, L_4, L_{[1..4]}, L_1, L_7, L_8, L_{[5..8]}, L_5)
\end{align*}
\]

- applied the previous method (of using \(L_{[1..4]}=L_1 \text{ xor } L_2 \text{ xor } L_3 \text{ xor } L_4 \)) to \((L_1,L_2,L_3,L_4)\) and \((L_5,L_6,L_7,L_8)\) independently
- All twenty four matrices are full rank
- \(X \) and \(Y \) can be used for CMAC
Case $w=n/8$ for EAX (1)

\[
\begin{align*}
A &= (L_1, \ldots, L_8) \\
B &= (L_4, L_{[1..4]}, L_1, L_2, L_8, L_{[5..8]}, L_5, L_6) \\
C &= (L_{[1..4]}, L_1, L_2, L_3, L_{[5..8]}, L_5, L_6, L_7) \\
X &= (L_2, L_3, L_4, L_{[1..4]}, L_6, L_7, L_8, L_{[5..8]}) \\
Y &= (L_3, L_4, L_{[1..4]}, L_1, L_7, L_8, L_{[5..8]}, L_5)
\end{align*}
\]

- applied the previous method (of using $L_{[1..4]}=L_1$ xor L_2 xor L_3 xor L_4) to (L_1, L_2, L_3, L_4) and (L_5, L_6, L_7, L_8) independently
- All twenty four matrices are full rank
- X and Y can be used for CMAC
Case w=n/8 for EAX (1)

\[
A = (L_1, \ldots, L_8) \\
B = (L_4, L_{[1..4]}, L_1, L_2, L_8, L_{[5..8]}, L_5, L_6) \\
C = (L_{[1..4]}, L_1, L_2, L_3, L_{[5..8]}, L_5, L_6, L_7) \\
X = (L_2, L_3, L_4, L_{[1..4]}, L_6, L_7, L_8, L_{[5..8]}) \\
Y = (L_3, L_4, L_{[1..4]}, L_1, L_7, L_8, L_{[5..8]}, L_5)
\]

- with \((n+2 \times n/8)\)-bit memory
 - store \(L\) and \(L_{[1..4]}\) and \(L_{[5..8]}\)
 - masks are obtained by a word permutation only
- with \(n\)-bit memory
 - store \(L\)
 - masks are obtained by a word permutation and six XORs
Case $w=n/8$ for EAX (1)

\[
A = (L_1, \ldots, L_8) \\
B = (L_4, L_{[1..4]}, L_1, L_2, L_8, L_{[5..8]}, L_5, L_6) \\
C = (L_{[1..4]}, L_1, L_2, L_3, L_{[5..8]}, L_5, L_6, L_7) \\
X = (L_2, L_3, L_4, L_{[1..4]}, L_6, L_7, L_8, L_{[5..8]}) \\
Y = (L_3, L_4, L_{[1..4]}, L_1, L_7, L_8, L_{[5..8]}, L_5)
\]

- can be used for the cases $w=n/4j$ for any $j \geq 1$
 - break L into $(L_1, L_2, \ldots, L_{4j})$
 - apply to $(L_1, L_2, L_3, L_4), (L_5, L_6, L_7, L_8), \ldots, (L_{4j-3}, L_{4j-2}, L_{4j-1}, L_{4j})$ independently
Case $w=n/8$ for EAX (2)

$A = (L_1, \ldots, L_8)$

$B = (L_2, L_{[1,2]}, L_4, L_{[3,4]}, L_6, L_{[5,6]}, L_8, L_{[7,8]})$

$C = (L_{[1,2]}, L_1, L_{[3,4]}, L_3, L_{[5,6]}, L_5, L_{[7,8]}, L_7)$

$X = (L_3, L_{[3,4]}, L_2, L_1, L_7, L_{[7,8]}, L_6, L_5)$

$Y = (L_4, L_3, L_{[1,2]}, L_2, L_8, L_7, L_{[5,6]}, L_6)$

• applied the previous method (of using $L_{[a,b]}=L_a \oplus L_b$) to (L_1, L_2, L_3, L_4) and (L_5, L_6, L_7, L_8) independently

• All twenty four matrices are full rank

• X and Y can be used for CMAC
Case \(w = n/8 \) for EAX (2)

\[
\begin{align*}
A &= (L_1, \ldots, L_8) \\
B &= (L_2, L_{[1,2]}, L_4, L_{[3,4]}, L_6, L_{[5,6]}, L_8, L_{[7,8]}) \\
C &= (L_{[1,2]}, L_1, L_{[3,4]}, L_3, L_{[5,6]}, L_5, L_{[7,8]}, L_7) \\
X &= (L_3, L_{[3,4]}, L_2, L_1, L_7, L_{[7,8]}, L_6, L_5) \\
Y &= (L_4, L_3, L_{[1,2]}, L_2, L_8, L_7, L_{[5,6]}, L_6)
\end{align*}
\]

- with \((n+4 \times n/8)\)-bit memory
 - store \(L \) and \(L_{[1,2]} \) and \(L_{[3,4]} \) and \(L_{[5,6]} \) and \(L_{[7,8]} \)
 - masks are obtained by a word permutation only
- with \(n \)-bit memory
 - store \(L \)
 - masks are obtained by a word permutation and four XORs
Case $w=n/8$ for EAX

- Interestingly, taking the first eight elements of the rotations of $(L_1,\ldots,L_8,L_{[1..8]})$ does not work

$$\begin{align*}
A &= (L_1, \ldots, L_8) \\
B &= (L_4, \ldots, L_8, L_{[1..8]}, L_1, L_2) \\
C &= (L_5, \ldots, L_8, L_{[1..8]}, L_1, L_2, L_3) \\
X &= (L_2, \ldots, L_8, L_{[1..8]}) \\
Y &= (L_3, \ldots, L_8, L_{[1..8]}, L_1)
\end{align*}$$

- X and Y do not work for CMAC
Case $w = n/16$ for EAX (1)

- Taking the first sixteen elements of the rotations of $(L_1, \ldots, L_{16}, L_{[1..16]})$ works

\[
\begin{align*}
A &= (L_1, \ldots, L_{16}) \\
B &= (L_4, \ldots, L_{16}, L_{[1..16]}, L_1, L_2) \\
C &= (L_5, \ldots, L_{16}, L_{[1..16]}, L_1, L_2, L_3) \\
X &= (L_2, \ldots, L_{16}, L_{[1..16]}) \\
Y &= (L_3, \ldots, L_{16}, L_{[1..16]}, L_1)
\end{align*}
\]

- a word permutation only with $(n + n/16)$-bit memory
 - store L and $L_{[1..16]}$
- with n-bit memory, 15 XORs are needed (if we store L)
- X and Y work for CMAC
Case \(w = n/16 \) for EAX (2)

- Construction that “looks good” (from searching limited space)

\[
\begin{align*}
A &= (L_1, \ldots, L_{16}) \\
B &= (L_4, \ldots, L_{16}, L_{[1,2]}, L_{[2,3]}, L_{[3,4]}) \\
C &= (L_5, \ldots, L_{16}, L_{[1,2]}, L_{[2,3]}, L_{[3,4]}, L_{[4,5]}) \\
X &= (L_2, \ldots, L_{16}, L_{[1,2]}) \\
Y &= (L_3, \ldots, L_{16}, L_{[1,2]}, L_{[2,3]})
\end{align*}
\]

- a word permutation only if \((n+4 \times n/16)\)-bit memory
 - store \(L \) and \(L_{[1,2]} \) and \(L_{[2,3]} \) and \(L_{[3,4]} \) and \(L_{[4,5]} \)

- with \(n \)-bit memory
 - store \(L \)
 - masks are obtained by a word permutation and four XORs
Summary of Mask Generation for EAX

<table>
<thead>
<tr>
<th>w = n/4</th>
<th>Perm. only if</th>
<th>with n-bit memory</th>
<th>ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>n + n/4</td>
<td>permutation + three XORs</td>
<td>[MiLulw13]</td>
</tr>
<tr>
<td>(2)</td>
<td>n + 2 x n/4</td>
<td>permutation + two XORs</td>
<td>[MiLulw13]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w = n/8</th>
<th>Perm. only if</th>
<th>with n-bit memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>n + 2 x n/8</td>
<td>permutation + six XORs</td>
</tr>
<tr>
<td>(2)</td>
<td>n + 4 x n/8</td>
<td>permutation + four XORs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w = n/16</th>
<th>Perm. only if</th>
<th>with n-bit memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>n + n/16</td>
<td>permutation + 15 XORs</td>
</tr>
<tr>
<td>(2)</td>
<td>n + 4 x n/16</td>
<td>permutation + four XORs</td>
</tr>
</tbody>
</table>
Summary

• Considered a problem of generating a fixed number of masks used in CMAC and EAX
• Demonstrated that the approach can be used to reduce the pre-computation complexity or memory cost with various word lengths
• Optimality of the examples in this talk is open, but generating examples is not hard (just to see if the matrices are full rank)
 – how we can obtain good constructions is open
• can be an option in your design
 – formalizing the sufficient conditions may not be easy