Generating a Fixed Number of Masks
with Word Permutations and XORs

Tetsu lwata, Nagoya University
Kazuhiko Minematsu, NEC Corporation

DIAC 2013, Directions in Authenticated Ciphers
August 12, 2013, Chicago, USA

Overview

Masks are frequently used in designs of blockcipher-based
MACs and AEADs

Some of them use many masks (the number depends on the
input length)

— Examples: PMAC (MAC), OCB (AEAD)

Others use a fixed number of masks

— Examples: CMAC (MAC), EAX (AEAD)

In many cases, multiplications over GF(2") are used

— Gray code, multiplications with a constant over a prime
field,...

— allow an easy and clean security proof
— efficient

Overview

e We show that word permutations and XORs can be used to
generate a fixed number of masks

— can be more efficient depending on the environment
e similar to a word-oriented LFSR

— focus on CMAC and EAX

— can be an option in your design

 [Note] A part of the results will appear in [MiLulw13]

— this talk reviews the approach in [MiLulw13] and presents
new concrete examples

[MiLulw13] Minematsu, Lucks, Iwata. Improved Authenticity Bound of EAX, and Refinements. ProvSec 2013, to appear.

Masks

e used to “tweak” the input of a blockcipher
— often XOR is used
— depends on the key
— sometimes they are used for the output as well

3
e

Y Y

OCB [RoBeBIKrO1, Ro04, KrRo11]

A<—Init(N)
A<Inc,(A) A<Inc,(A) A<lInc,(A) A<Inc_(A) A<Incg(A)
MI[1] M|[2] MI3] M[m] CheckSum
A 9% A —)% A 9% A 9% A »%
E¢ Ex Ex (N N
A »% A —)% A »% »% Auth »%
C[1] C[2] C[3] C[m]

e Gray code, XOR with a pre-computed value
e The number of masks depends on the input length

CMAC [NIST SP 800-38B]

MI[1] M|[2] M|3] M[m-1] M[m] || 10...0
2L
or
4L
E¢ E¢ Ex / o060 E¢ E¢
CMACK(M)

MAC, variable-input length PRF
L=E,(0")

2L: “doubling” of L in GF(2")
41: 2(2L)

CMAC [NIST SP 800-38B]

M[1] M[2] M[3] M[m-1] M[m] || 10...0

|

CMAC,(M)

e X=2L,Y=4L

Six Conditionson Xand Y

e For any n-bit constant c and sufficiently small g, if Lis
randomly chosen

(

Pr[X =] <e

PrlY =] <e
PrliX@Y = <e
Pr X® L=c<e
PrlY @ L =c| <€
PriIX®Y®L=c<e

\

 These six conditions are sufficient for CMAC being a secure
PRF

Six Conditionson Xand Y

with X=2L and Y=4L

r.

Pr[X
PrlY = (]
PriXeY = <e
PrliX@ L=c] <ce¢
PrlY L =c <e
PriX®oY dL=c <e¢

c]

<€
<eE€

\

where g=1/2"

Pr
Pr
Pr
Pr
Pr
Pr

2L =c
4L = ¢
6L =c
3L =c
5L = (|
7L =c

VAN VANSN VANRN VAR VAN VAN

M

M

)

M

™

o)

Breaking L into Words

block length: n bits

word length: w bits

w=n/4 (e.g., (n,w)=(128,32), (64,16))
L=(L,,L,,Ls,L,)

Ly 4=L; xor L, xor Ly xor L,

X = (L2, L3, La, Ly _4)
Y = (L37L47L[1..4]7L1)

Breaking L into Words

block length: n bits

word length: w bits

w=n/4 (e.g., (n,w)=(128,32), (64,16))
L=(L,,L,,L5,L,)

Ly 4=L; xor L, xor Ly xor L,

X = (L2, L3, La, Ly _4)
Y = (L37L47L[1..4]7L1)

It works

Breaking L into Words

Y = (L3, L4, L

{X (L23L37L4:L[1 4])

1. 4]7L1)

My =

<
|

L1 LQ L3 L4] : MX

(0011]

0010
1010

0110

* M, and M, are 4 x 4 matrices over GF(Z”/4)

full rank

12

Breaking L into Words

1011
1111

e All six matrices

(0010] (1001 (1011 (1010]

0101] |oo010] [o111] [0100

X = Mx

Y = My the identity
XPY = Mx & My matrix

XPOL=Mx®dI
YSL= My DI
XY L=>MxdMyaI

1101 0110 1111
0111 1000 1101

are full rank

e for each condition, one value of L satisfies the equality, e=1/2"

13

Breaking L into Words

X = (L2, L3, La, Ly _4)
Y = (L37L47L[1..4]7L1)

e with (n+n/4)-bit memory
— store Land L 4
— masks are obtained by a word permutation only
e with n-bit memory
— store L
— masks are obtained by a word permutation and three XORs

EAX [BeRoWa04]

N (nonce) M (plaintext) H (header)
CMACIO] CMAC[1]
} }

N (IV for CTR) —>| CTR mode encryption

!

C (ciphertext)

!

CMAC[2]

KD+

CMAC[t]: tweaked CMAC A

T (tag)

Tweaked CMAC in EAX

Oorlor2
(in binary) M1l MI[2]
E, E, E,

=

CMACIO0], CMAC[1], CMACI2]

Ex

|

M[m-1] M[m] || 10...0

1

CMAC[t] (M)

2L
or
4L

E,(O)
or
E (0™11)
or

Tweaked CMAC in EAX

M[1]

-4

E,(0"210)

Ex

M[2]

=

CMACIO0], CMAC[1], CMACI2]

M[m-1] M[m] || 10...0

Ex

|

1

CMAC[t] (M)

oL
or
4L

Tweaked CMAC in EAX

— MI[1] M|[2] M[m-1] M[m] || 10...0
A
or ‘)% X
B or
or Y
C EK EK EK EK

I/ -/

CMAC[t] (M)

A, B, C, X, and Y Are Masks

e can be pre-computed and stored in memory to optimize the
efficiency

— three blockcipher calls for pre-computation
— masks are sensitive information (should not be disclosed)
— memory can be costly
e resource constrained devices
— EAX-prime [ANSI C12.22]
e aslightly modified version of EAX

e proposed to reduced the pre-computation complexity
or memory cost

* insecure

A, B, C, X, and Y Are Masks

e afixed number of (five) masks

e desirable to efficiently obtain the five masks from a small
amount of memory in any order

— no need to sequentially generate them
— unlike word-oriented LFSRs

y

Pr
Pr
Pr
Pr
Pr

\

Pr|

PSR RS

Pr|
Pr|

Twenty Four Conditions [MiLulw13]

A, B, C, X, Y are functions of L

For any n-bit constant c and sufficiently small g, if L is
randomly chosen

Il
O, .8,

O,

0,

o,
IAN A IA A
™M

M

N
N ™M

™

secure AEAD

’

\

Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr

APY =c¢| <ce¢
BaC=c|<e
B X =c|]<e¢
BOY =] <e
ChHX =c|<ce
ChpY =] <e¢
XBY =¢] <e
A®dBed X =] <e

\

Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr

ASA A

A C P X =]
BaeCoX =
ADBDY =
A CBY =c¢
BaCaRY =
A B XaY =

APCHXDY =
BaCeXaY =

 These twenty four conditions are sufficient for EAX being a

™M

(@)

™

™

N

Case w=n/4 for EAX (1) [MiLulw13]

(L1, Lo, L3, Ly)

(L4,L Ll,Lg)

(Lp..a15 L1,L2a L)
1)
)

(L L37L47
(L31L4: 4]9L1

"<><QUUD>
|

* the first four elements of rotations of (L,,L,,L5,L,,L; 4)
— L=(Ly,L,L5,L), Ly 4y=Ly xor L, xor Ls xor L,
e All twenty four matrices are full rank

Case w=n/4 for EAX (1) [MiLulw13]

e with (n+n/4)-bit memory
— store L=E(0") and L, 4
— masks are obtained by a word permutation only
e with n-bit memory
— store L
— masks are obtained by a word permutation and three XORs

Case w=n/4 for EAX (2) [MiLulw13]

(A _
B = (L2, Ly 91, La, L3 4))
C = (Lpg L1, Liza, L3)
X = (Ls, Lz 41, L2, L)
Y = (L4, L3, L 9], Lo)

o

Lla L27 L37 L4)

Lo pj=La XOr L,

All twenty four matrices are full rank

Searched for (limited) space, picked one that “looks good”
— small memory to implement, small number of XORs

X and Y can be used for CMAC as well

Case w=n/4 for EAX (2) [MiLulw13]

(L1, Lo, L3, Ly)
(L2, L1 97, La, Lz 4))
(le Ly, L3 41, L3)
L3, L3 4, Lo, L1)
(L4,L3, 1,2)> L2)

"<><QUUD>
|

e with (n+2 x n/4)-bit memory
— store Land L, ,;and L 4
— masks are obtained by a word permutation only
e with n-bit memory
— store L
— masks are obtained by a word permutation and two XORs

So Far, w=n/4

e w=n/4

— (n,w)=(128,32), (64,16)
e w=n/8

— (n,w)=(128,16), (64,8)
e w=n/16

— (n,w)=(128,8)

Case w=n/8 for EAX (1)

n
[

(Lla)

B= (L4,L 4],L1,L27L83L5 8)» s, L)
C = (Lp.ap, L1, L2, L3, L5 g, Ls, Lg, L7)
X = (L2, L3, La, Ly 4), L6, L7, Ls, L5)
\Y = (L3, L4, Ly gy, L1, L7, Lg, L5 g), Ls)

* applied the previous method (of using L;; 4=L, xor L, xor L; xor
L,) to (L,,L,,Ls,L,) and (L, L, L, Lg) independently

e All twenty four matrices are full rank
e XandY can be used for CMAC

Case w=n/8 for EAX (1)

n
[

(L1, .., Ls)

B = (L4,L 4],L1,L2 Lg, Ls. g, Ls, Le)
C = (Lp..4), L1, Lo, L3\ L5, 8], Ls, L, L7)
X = (L2, L3, La, Ly 4)) L6, L7, Ls, L5_g))
\Y = (L3, L4, Ly 4y, L1| L7, Ls, L5 8], Ls)

* applied the previous method (of using L;; 4=L, xor L, xor L; xor
L,) to (L,,L,,Ls,L,) and (L, L, L, Lg) independently

e All twenty four matrices are full rank
e XandY can be used for CMAC

28

Case w=n/8 for EAX (1)

N
[

(L1, ..., Ls)

b= (L4,L 4]3L17L2 Ls, Ljs. 8], Ls, L)
C = (Lp.ap, L1, L2, L3| L5 g, Ls, Lg, L7)
X = (Lo, L3, Ly, Ly g} Le, L7, Ls, Lj5_g))
Y = (L3, L4, Lj1.4), L1| L7, Ls, L5, 8]:L5)

e with (n+2 x n/8)-bit memory
— store Land Ly, 4 and Ly g
— masks are obtained by a word permutation only
e with n-bit memory
— store L
— masks are obtained by a word permutation and six XORs

29

Case w=n/8 for EAX (1)

n
[

(L1, ..., Ls)

b= (L4,L 4]3L17L2 Ls, Ljs. 8], Ls, L)
C = (Lp.ap, L1, L2, L3| L5 g, Ls, Lg, L7)
X = (Lo, L3, Ly, Ly g} Le, L7, Ls, Lj5_g))
Y = (L3, L4, Lj1.4), L1| L7, Ls, L5, 8]:L5)

e can be used for the cases w=n/4j for any j>1
— break L into (Ly,L,,...,Ly)

— apply to (Ly,L,,L5,L,), (Ls,Le, Ly, Lg),ee(Lgs 20 Las 20 Laj 0 L)
independently

30

Case w=n/8 for EAX (2)

(Lla)

(L2, Ly, Las Lz 41, Le, Lis 6] Lsy Lz g))
= (Lp o, L1, Lis 4y, L3, Lis 6], Ls, L7 57, Li7)
= (L3, L3 41, L2, L1, L7, L7 87, Lg, Ls)

= (L4, L3, Lpy 9, L2, Lg, L7, L5 6], Lg)

“<><QU3D>

applied the previous method (of using L, =L, xor L) to
(L,,L,,L;,L,) and (Lg,Lg, L, Lg) independently

All twenty four matrices are full rank
X and Y can be used for CMAC

31

Case w=n/8 for EAX (2)

(Lla)

(L2, Ly, Las Lz 41, Le, Lis 6] Lsy Lz g))
= (Lp o, L1, Lis 4y, L3, Lis 6], Ls, L7 57, Li7)
= (L3, L3 41, L2, L1, L7, L7 87, Lg, Ls)

= (L4, L3, Lpy 9, L2, Lg, L7, L5 6], Lg)

“<><QU3D>

\

e with (n+4 x n/8)-bit memory
— store Land L, ,;and Lz 4yand Lis ; and Ly
— masks are obtained by a word permutation only
e with n-bit memory
— store L
— masks are obtained by a word permutation and four XORs

Case w=n/8 for EAX

* Interestingly, taking the first eight elements of the rotations of
(Ly,-sLg Ly o)) dO€S not work

f

N
|

(L1,...,Lg)

B = (Ls,...,Ls, Ly g, L1, L2)

C = (Ls,...,Ls, Lyy.g), L1, Lo, L)
X =(Ly,..., L, L1.g))

Y = (Ls,...,Ls, Lt.g, 1)

e XandY do not work for CMAC

Case w=n/16 for EAX (1)

Taking the first sixteen elements of the rotations of
(LysesLigla 16) WOTkS

A= (L,..., L)
B = (Ly,...,L16, Ly 16 L1, Lo)
¢ C = (Ls,...,Lis, Ly1.16), L1, L2, L3)
X = (La,..., L6, Ly 16])
Y = (L3, ..., L6, Lpi..16]5 L1)
a word permutation only with (n+n/16)-bit memory

— store Land L, 44
with n-bit memory, 15 XORs are needed (if we store L)
X and Y work for CMAC

Case w=n/16 for EAX (2)

e Construction that “looks good” (from searching limited space)

(A= (Ly,...,L)
B = (L4,...,L16, L2, Li2,3), L3 q)
C = (L5, ..., L1, L[l,Q]a L[2,3]5 L[3,4]v L[4,5])
X = (Lo,...,L1¢,Lp1 9)

Y = (Ls,..., Li6, Lo Lz ,g))

e aword permutation only if (n+4 x n/16)-bit memory

N

— store Land Ly, and L, 5 and L3 4 and Ly,)
e with n-bit memory

— store L

— masks are obtained by a word permutation and four XORs

Summary of Mask Generation for EAX

e W= n/4 Perm. only if with n-bit memory ref.

(1) [n+n/4 permutation + three XORs | [MiLulw13]

(2) |n+2xn/4 permutation + two XORs [MiLulw13]
e w=n/8 Perm. only if with n-bit memory

(1) [n+2xn/8 permutation + six XORs

n+4xn permutation + tour S

(2) 4xn/8 i four XOR

e w=n/16 Perm. only if with n-bit memory

(1)

n+n/16

permutation + 15 XORs

(2)

n+4xn/16

permutation + four XORs

Summary

Considered a problem of generating a fixed number of masks
used in CMAC and EAX

Demonstrated that the approach can be used to reduce the
pre-computation complexity or memory cost with various
word lengths

Optimality of the examples in this talk is open, but generating
examples is not hard (just to see if the matrices are full rank)

— how we can obtain good constructions is open
can be an option in your design
— formalizing the sufficient conditions may not be easy

