Generating a Fixed Number of Masks with Word Permutations and XORs

Tetsu Iwata, Nagoya University
Kazuhiko Minematsu, NEC Corporation

DIAC 2013, Directions in Authenticated Ciphers August 12, 2013, Chicago, USA

Overview

- Masks are frequently used in designs of blockcipher-based MACs and AEADs
- Some of them use many masks (the number depends on the input length)
 - Examples: PMAC (MAC), OCB (AEAD)
- Others use a fixed number of masks
 - Examples: CMAC (MAC), EAX (AEAD)
- In many cases, multiplications over GF(2ⁿ) are used
 - Gray code, multiplications with a constant over a prime field,...
 - allow an easy and clean security proof
 - efficient

Overview

- We show that word permutations and XORs can be used to generate a fixed number of masks
 - can be more efficient depending on the environment
 - similar to a word-oriented LFSR
 - focus on CMAC and EAX
 - can be an option in your design

- [Note] A part of the results will appear in [MiLulw13]
 - this talk reviews the approach in [MiLulw13] and presents new concrete examples

Masks

- used to "tweak" the input of a blockcipher
 - often XOR is used
 - depends on the key
 - sometimes they are used for the output as well

OCB [RoBeBlKr01, Ro04, KrRo11]

- Gray code, XOR with a pre-computed value
- The number of masks depends on the input length

CMAC [NIST SP 800-38B]

- MAC, variable-input length PRF
- L=E_K(Oⁿ)
- 2L: "doubling" of L in GF(2ⁿ)
- 4L: 2(2L)

CMAC [NIST SP 800-38B]

• X=2L, Y=4L

Six Conditions on X and Y

• For any n-bit constant c and sufficiently small ε , if L is randomly chosen

$$\begin{cases} \Pr[X = c] \leq \epsilon \\ \Pr[Y = c] \leq \epsilon \\ \Pr[X \oplus Y = c] \leq \epsilon \\ \Pr[X \oplus L = c] \leq \epsilon \\ \Pr[Y \oplus L = c] \leq \epsilon \\ \Pr[X \oplus Y \oplus L = c] \leq \epsilon \end{cases}$$

 These six conditions are sufficient for CMAC being a secure PRF

Six Conditions on X and Y

with X=2L and Y=4L

$$\begin{cases} \Pr[X=c] \leq \epsilon \\ \Pr[Y=c] \leq \epsilon \\ \Pr[X \oplus Y=c] \leq \epsilon \\ \Pr[X \oplus L=c] \leq \epsilon \end{cases} \qquad \begin{cases} \Pr[2L=c] \leq \epsilon \\ \Pr[4L=c] \leq \epsilon \\ \Pr[6L=c] \leq \epsilon \\ \Pr[3L=c] \leq \epsilon \\ \Pr[3L=c] \leq \epsilon \\ \Pr[5L=c] \leq \epsilon \end{cases}$$

$$\Pr[TA \oplus TA \oplus TA] \qquad \begin{cases} \Pr[2L=c] \leq \epsilon \\ \Pr[4L=c] \leq \epsilon \\ \Pr[5L=c] \leq \epsilon \\ \Pr[5L=c] \leq \epsilon \\ \Pr[5L=c] \leq \epsilon \end{cases}$$

where ε =1/2ⁿ

Breaking L into Words

- block length: n bits
- word length: w bits
- w=n/4 (e.g., (n,w)=(128,32), (64,16))
- $L=(L_1,L_2,L_3,L_4)$
- $L_{[1..4]}=L_1 \text{ xor } L_2 \text{ xor } L_3 \text{ xor } L_4$

$$\begin{cases} X = (L_2, L_3, L_4, L_{[1..4]}) \\ Y = (L_3, L_4, L_{[1..4]}, L_1) \end{cases}$$

Breaking L into Words

- block length: n bits
- word length: w bits
- w=n/4 (e.g., (n,w)=(128,32), (64,16))
- $L=(L_1,L_2,L_3,L_4)$
- $L_{[1..4]}=L_1 \text{ xor } L_2 \text{ xor } L_3 \text{ xor } L_4$

$$\begin{cases} X = (L_2, L_3, L_4, L_{[1..4]}) \\ Y = (L_3, L_4, L_{[1..4]}, L_1) \end{cases}$$

It works

Breaking Linto Words

$$\begin{cases} X = (L_2, L_3, L_4, L_{[1..4]}) \\ Y = (L_3, L_4, L_{[1..4]}, L_1) \end{cases}$$

$$\begin{cases} X = \begin{bmatrix} L_1 \ L_2 \ L_3 \ L_4 \end{bmatrix} \cdot M_X \\ Y = \begin{bmatrix} L_1 \ L_2 \ L_3 \ L_4 \end{bmatrix} \cdot M_Y \end{cases}$$

$$M_X = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \text{ and } M_Y = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

- M_x and M_y are 4 x 4 matrices over GF(2^{n/4})
- full rank

Breaking L into Words

$$X\Rightarrow M_X$$
 $Y\Rightarrow M_Y$ the identity $X\oplus Y\Rightarrow M_X\oplus M_Y$ matrix $X\oplus L\Rightarrow M_X\oplus I$ $Y\oplus L\Rightarrow M_Y\oplus I$ $X\oplus Y\oplus L\Rightarrow M_X\oplus M_Y\oplus I$

$[0\ 0\ 1\ 0]$	$\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$	$\lceil 1 \ 0 \ 1 \ 1 \rceil$	$\lceil 1\ 0\ 1\ 0 \rceil$
1011	$ 1 \ 1 \ 0 \ 1 $	0110	1111
1111	$0\ 1\ 1\ 1$	$ 1 \ 0 \ 0 \ 0 $	1101
$\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$	$[0\ 0\ 1\ 0]$	$\begin{bmatrix} 0 \ 1 \ 1 \ 1 \end{bmatrix}$	$[0\ 1\ 0\ 0]$

- All six matrices are full rank
- for each condition, one value of L satisfies the equality, $\varepsilon=1/2^n$

Breaking Linto Words

$$\begin{cases} X = (L_2, L_3, L_4, L_{[1..4]}) \\ Y = (L_3, L_4, L_{[1..4]}, L_1) \end{cases}$$

- with (n+n/4)-bit memory
 - store L and $L_{[1..4]}$
 - masks are obtained by a word permutation only
- with n-bit memory
 - store L
 - masks are obtained by a word permutation and three XORs

EAX [BeRoWa04]

Tweaked CMAC in EAX

CMAC[0], CMAC[1], CMAC[2]

Tweaked CMAC in EAX

CMAC[0], CMAC[1], CMAC[2]

Tweaked CMAC in EAX

A, B, C, X, and Y Are Masks

- can be pre-computed and stored in memory to optimize the efficiency
 - three blockcipher calls for pre-computation
 - masks are sensitive information (should not be disclosed)
 - memory can be costly
 - resource constrained devices
 - EAX-prime [ANSI C12.22]
 - a slightly modified version of EAX
 - proposed to reduced the pre-computation complexity or memory cost
 - insecure

A, B, C, X, and Y Are Masks

- a fixed number of (five) masks
- desirable to efficiently obtain the five masks from a small amount of memory in any order
 - no need to sequentially generate them
 - unlike word-oriented LFSRs

Twenty Four Conditions [MiLulw13]

- A, B, C, X, Y are functions of L
- For any n-bit constant c and sufficiently small ε , if L is randomly chosen

$$\begin{cases} \Pr[A=c] \leq \epsilon \\ \Pr[B=c] \leq \epsilon \\ \Pr[C=c] \leq \epsilon \\ \Pr[X=c] \leq \epsilon \end{cases} \begin{cases} \Pr[A \oplus Y=c] \leq \epsilon \\ \Pr[B \oplus C=c] \leq \epsilon \\ \Pr[A \oplus X=c] \leq \epsilon \\ \Pr[X=c] \leq \epsilon \end{cases} \\ \Pr[X=c] \leq \epsilon \\ \Pr[A \oplus B=c] \leq \epsilon \\ \Pr[A \oplus C=c] \leq \epsilon \end{cases} \begin{cases} \Pr[A \oplus Y=c] \leq \epsilon \\ \Pr[B \oplus C \oplus X=c] \leq \epsilon \\ \Pr[A \oplus B \oplus Y=c] \leq \epsilon \\ \Pr[A \oplus C \oplus Y=c] \leq \epsilon \\ \Pr[A \oplus B \oplus X \oplus Y=c] \leq \epsilon \\ \Pr[A \oplus C \oplus Y=c] \leq \epsilon \\ \Pr[A \oplus C \oplus X \oplus Y=c] \leq \epsilon \\ \Pr[A \oplus C \oplus X \oplus Y=c] \leq \epsilon \\ \Pr[A \oplus C \oplus X \oplus Y=c] \leq \epsilon \\ \Pr[A \oplus C \oplus X \oplus Y=c] \leq \epsilon \end{cases}$$

These twenty four conditions are sufficient for EAX being a secure AEAD

Case w=n/4 for EAX (1) [MiLulw13]

$$\begin{cases}
A = (L_1, L_2, L_3, L_4) \\
B = (L_4, L_{[1..4]}, L_1, L_2) \\
C = (L_{[1..4]}, L_1, L_2, L_3) \\
X = (L_2, L_3, L_4, L_{[1..4]}) \\
Y = (L_3, L_4, L_{[1..4]}, L_1)
\end{cases}$$

- the first four elements of rotations of (L₁,L₂,L₃,L₄,L_[1..4])
 - $L=(L_1,L_2,L_3,L_4), L_{[1..4]}=L_1 \text{ xor } L_2 \text{ xor } L_3 \text{ xor } L_4$
- All twenty four matrices are full rank

Case w=n/4 for EAX (1) [MiLulw13]

$$\begin{cases} A = (L_1, L_2, L_3, L_4) \\ B = (L_4, L_{[1..4]}, L_1, L_2) \\ C = (L_{[1..4]}, L_1, L_2, L_3) \\ X = (L_2, L_3, L_4, L_{[1..4]}) \\ Y = (L_3, L_4, L_{[1..4]}, L_1) \end{cases}$$

- with (n+n/4)-bit memory
 - store $L=E_K(0^n)$ and $L_{[1..4]}$
 - masks are obtained by a word permutation only
- with n-bit memory
 - store L
 - masks are obtained by a word permutation and three XORs

Case w=n/4 for EAX (2) [MiLulw13]

$$\begin{cases}
A = (L_1, L_2, L_3, L_4) \\
B = (L_2, L_{[1,2]}, L_4, L_{[3,4]}) \\
C = (L_{[1,2]}, L_1, L_{[3,4]}, L_3) \\
X = (L_3, L_{[3,4]}, L_2, L_1) \\
Y = (L_4, L_3, L_{[1,2]}, L_2)
\end{cases}$$

- $L_{[a,b]} = L_a \text{ xor } L_b$
- All twenty four matrices are full rank
- Searched for (limited) space, picked one that "looks good"
 - small memory to implement, small number of XORs
- X and Y can be used for CMAC as well

Case w=n/4 for EAX (2) [MiLulw13]

$$\begin{cases}
A = (L_1, L_2, L_3, L_4) \\
B = (L_2, L_{[1,2]}, L_4, L_{[3,4]}) \\
C = (L_{[1,2]}, L_1, L_{[3,4]}, L_3) \\
X = (L_3, L_{[3,4]}, L_2, L_1) \\
Y = (L_4, L_3, L_{[1,2]}, L_2)
\end{cases}$$

- with (n+2 x n/4)-bit memory
 - store L and $L_{[1,2]}$ and $L_{[3,4]}$
 - masks are obtained by a word permutation only
- with n-bit memory
 - store L
 - masks are obtained by a word permutation and two XORs

So Far, w=n/4

w=n/4

(n,w)=(128,32), (64,16)

w=n/8

(n,w)=(128,16), (64,8)

w=n/16

(n,w)=(128,8)

$$\begin{cases}
A = (L_1, \dots, L_8) \\
B = (L_4, L_{[1..4]}, L_1, L_2, L_8, L_{[5..8]}, L_5, L_6) \\
C = (L_{[1..4]}, L_1, L_2, L_3, L_{[5..8]}, L_5, L_6, L_7) \\
X = (L_2, L_3, L_4, L_{[1..4]}, L_6, L_7, L_8, L_{[5..8]}) \\
Y = (L_3, L_4, L_{[1..4]}, L_1, L_7, L_8, L_{[5..8]}, L_5)
\end{cases}$$

- applied the previous method (of using $L_{[1..4]} = L_1 \text{ xor } L_2 \text{ xor } L_3 \text{ xor } L_4$) to (L_1, L_2, L_3, L_4) and (L_5, L_6, L_7, L_8) independently
- All twenty four matrices are full rank
- X and Y can be used for CMAC

$$\begin{cases}
A = (L_1, \dots, L_8) \\
B = (L_4, L_{[1..4]}, L_1, L_2, L_3, L_{[5..8]}, L_5, L_6) \\
C = (L_{[1..4]}, L_1, L_2, L_3, L_{[5..8]}, L_5, L_6, L_7) \\
X = (L_2, L_3, L_4, L_{[1..4]}, L_6, L_7, L_8, L_{[5..8]}) \\
Y = (L_3, L_4, L_{[1..4]}, L_1, L_7, L_8, L_{[5..8]}, L_5)
\end{cases}$$

- applied the previous method (of using $L_{[1..4]} = L_1 \text{ xor } L_2 \text{ xor } L_3 \text{ xor } L_4$) to (L_1, L_2, L_3, L_4) and (L_5, L_6, L_7, L_8) independently
- All twenty four matrices are full rank
- X and Y can be used for CMAC

$$\begin{cases}
A = (L_1, \dots, L_8) \\
B = (L_4, L_{[1..4]}, L_1, L_2, L_3, L_{[5..8]}, L_5, L_6) \\
C = (L_{[1..4]}, L_1, L_2, L_3, L_{[5..8]}, L_5, L_6, L_7) \\
X = (L_2, L_3, L_4, L_{[1..4]}, L_6, L_7, L_8, L_{[5..8]}) \\
Y = (L_3, L_4, L_{[1..4]}, L_1, L_7, L_8, L_{[5..8]}, L_5)
\end{cases}$$

- with (n+2 x n/8)-bit memory
 - store L and $L_{[1..4]}$ and $L_{[5..8]}$
 - masks are obtained by a word permutation only
- with n-bit memory
 - store L
 - masks are obtained by a word permutation and six XORs

$$\begin{cases} A = (L_1, \dots, L_8) \\ B = (L_4, L_{[1..4]}, L_1, L_2, L_3, L_{[5..8]}, L_5, L_6) \\ C = (L_{[1..4]}, L_1, L_2, L_3, L_{[5..8]}, L_5, L_6, L_7) \\ X = (L_2, L_3, L_4, L_{[1..4]}, L_1, L_2, L_3, L_{[5..8]}, L_5, L_6) \\ Y = (L_3, L_4, L_{[1..4]}, L_1, L_7, L_8, L_{[5..8]}, L_5) \end{cases}$$

- can be used for the cases w=n/4j for any j≥1
 - break L into $(L_1, L_2, ..., L_{4i})$
 - apply to (L_1, L_2, L_3, L_4) , (L_5, L_6, L_7, L_8) ,..., $(L_{4j-3}, L_{4j-2}, L_{4j-1}, L_{4j})$ independently

$$\begin{cases}
A = (L_1, \dots, L_8) \\
B = (L_2, L_{[1,2]}, L_4, L_{[3,4]}, L_6, L_{[5,6]}, L_8, L_{[7,8]}) \\
C = (L_{[1,2]}, L_1, L_{[3,4]}, L_3, L_{[5,6]}, L_5, L_{[7,8]}, L_7) \\
X = (L_3, L_{[3,4]}, L_2, L_1, L_7, L_{[7,8]}, L_6, L_5) \\
Y = (L_4, L_3, L_{[1,2]}, L_2, L_8, L_7, L_{[5,6]}, L_6)
\end{cases}$$

- applied the previous method (of using $L_{[a,b]}=L_a$ xor L_b) to (L_1,L_2,L_3,L_4) and (L_5,L_6,L_7,L_8) independently
- All twenty four matrices are full rank
- X and Y can be used for CMAC

$$\begin{cases}
A = (L_1, \dots, L_8) \\
B = (L_2, L_{[1,2]}, L_4, L_{[3,4]}, L_6, L_{[5,6]}, L_8, L_{[7,8]}) \\
C = (L_{[1,2]}, L_1, L_{[3,4]}, L_3, L_{[5,6]}, L_5, L_{[7,8]}, L_7) \\
X = (L_3, L_{[3,4]}, L_2, L_1, L_7, L_{[7,8]}, L_6, L_5) \\
Y = (L_4, L_3, L_{[1,2]}, L_2, L_8, L_7, L_{[5,6]}, L_6)
\end{cases}$$

- with (n+4 x n/8)-bit memory
 - store L and $L_{[1,2]}$ and $L_{[3,4]}$ and $L_{[5,6]}$ and $L_{[7,8]}$
 - masks are obtained by a word permutation only
- with n-bit memory
 - store L
 - masks are obtained by a word permutation and four XORs

Case w=n/8 for EAX

• Interestingly, taking the first eight elements of the rotations of $(L_1,...,L_8,L_{[1..8]})$ does not work

$$\begin{cases}
A = (L_1, \dots, L_8) \\
B = (L_4, \dots, L_8, L_{[1..8]}, L_1, L_2) \\
C = (L_5, \dots, L_8, L_{[1..8]}, L_1, L_2, L_3) \\
X = (L_2, \dots, L_8, L_{[1..8]}) \\
Y = (L_3, \dots, L_8, L_{[1..8]}, L_1)
\end{cases}$$

X and Y do not work for CMAC

• Taking the first sixteen elements of the rotations of $(L_1,...,L_{16},L_{1...16})$ works

$$\begin{cases}
A = (L_1, \dots, L_{16}) \\
B = (L_4, \dots, L_{16}, L_{[1..16]}, L_1, L_2) \\
C = (L_5, \dots, L_{16}, L_{[1..16]}, L_1, L_2, L_3) \\
X = (L_2, \dots, L_{16}, L_{[1..16]}) \\
Y = (L_3, \dots, L_{16}, L_{[1..16]}, L_1)
\end{cases}$$

- a word permutation only with (n+n/16)-bit memory
 - store L and $L_{[1..16]}$
- with n-bit memory, 15 XORs are needed (if we store L)
- X and Y work for CMAC

Case w=n/16 for EAX (2)

Construction that "looks good" (from searching limited space)

$$\begin{cases}
A = (L_1, \dots, L_{16}) \\
B = (L_4, \dots, L_{16}, L_{[1,2]}, L_{[2,3]}, L_{[3,4]}) \\
C = (L_5, \dots, L_{16}, L_{[1,2]}, L_{[2,3]}, L_{[3,4]}, L_{[4,5]}) \\
X = (L_2, \dots, L_{16}, L_{[1,2]}) \\
Y = (L_3, \dots, L_{16}, L_{[1,2]}, L_{[2,3]})
\end{cases}$$

- a word permutation only if (n+4 x n/16)-bit memory
 - store L and $L_{[1,2]}$ and $L_{[2,3]}$ and $L_{[3,4]}$ and $L_{[4,5]}$
- with n-bit memory
 - store L
 - masks are obtained by a word permutation and four XORs

Summary of Mask Generation for EAX

• W=
$$n/8$$
 Perm. only if with n-bit memory

(1) $n + 2 \times n/8$ permutation + six XORs

(2) $n + 4 \times n/8$ permutation + four XORs

Summary

- Considered a problem of generating a fixed number of masks used in CMAC and EAX
- Demonstrated that the approach can be used to reduce the pre-computation complexity or memory cost with various word lengths
- Optimality of the examples in this talk is open, but generating examples is not hard (just to see if the matrices are full rank)
 - how we can obtain good constructions is open
- can be an option in your design
 - formalizing the sufficient conditions may not be easy