
1

DIAC 2013, OWCM: One-Way Counter Mode

OWCM: One-Way
Counter Mode

Department of Telematics,
Faculty of Information Technology, Mathematics and Electrical Engineering
Norwegian University of Science and TechnologyTechnology - NTNU, NORWAY

Danilo Gligoroski and Hristina Mihajloska and Håkon Jacobsen

2

DIAC 2013, OWCM: One-Way Counter Mode

In this talk I will present the
material from our two

submissions to DIAC 2013
(as agreed with the organizer)

3

DIAC 2013, OWCM: One-Way Counter Mode

In this talk I will present the
material from our two

submissions to DIAC 2013
(as agreed with the organizer)

• Should MAC's retain
hash properties
when the key is
known in the next
AEAD?

• OWCM: One-Way
Counter Mode
(initial design)

Introductory advertisement for

4

DIAC 2013, OWCM: One-Way Counter Mode

Let us start with the following
story from a design meeting in

one organization …

BIG
DATA

Emails
Social

networks

Video
surveillance

Telephone
conversations

SMS Industrial
secrets

Chats

Financial
secrets

In our BIG organization we want to
introduce a new feature in our huge

huge BIG DATABASE:
Authenticated Encryption with

Associated Data

5

DIAC 2013, OWCM: One-Way Counter Mode

BIG
DATA

Emails
Social

networks

Video
surveillance

Telephone
conversations

SMS Industrial
secrets

Chats

Financial
secrets We should use a software

library that implements NSA
Suit B Cryptography.

6

DIAC 2013, OWCM: One-Way Counter Mode

BIG
DATA

Emails
Social

networks

Video
surveillance

Telephone
conversations

SMS Industrial
secrets

Chats

Financial
secrets

Or we can use some open
source crypto library such

as: OpenSSL, Crypto++, …

7

DIAC 2013, OWCM: One-Way Counter Mode

BIG
DATA

Emails
Social

networks

Video
surveillance

Telephone
conversations

SMS Industrial
secrets

Chats

Financial
secrets Yeah, OpenSSL and

Crypto++ have CCM and
GCM mode implemented.

And these modes are

provable secure.

8

DIAC 2013, OWCM: One-Way Counter Mode

BIG
DATA

Emails
Social

networks

Video
surveillance

Telephone
conversations

SMS Industrial
secrets

Chats

Financial
secrets

Maybe we can use OCB mode,
it is much faster than GCM
mode (but it is patented)

9

DIAC 2013, OWCM: One-Way Counter Mode

BIG
DATA

Emails
Social

networks

Video
surveillance

Telephone
conversations

SMS Industrial
secrets

Chats

Financial
secrets

But sometimes files are realy big
(like hundreds of gigabytes). We can
not transfer them every time when
we need just a sanity check that

the data is not corrupted.

10

DIAC 2013, OWCM: One-Way Counter Mode

All software libraries that perform
AEAD, have functions that give
us back only the authentication

tag. We will communicate that tag
in a secure way, so no need to

transfer ALL DATA …

BIG
DATA

Emails
Social

networks

Video
surveillance

Telephone
conversations

SMS Industrial
secrets

Chats

Financial
secrets

11

DIAC 2013, OWCM: One-Way Counter Mode

BIG
DATA

Emails
Social

networks

Video
surveillance

Telephone
conversations

SMS Industrial
secrets

Chats

Financial
secrets

Yeah, we solved the problem, we will
use NSA approved set of cryptographic

functions that are mathematically proved
that they are secure.

WHAT COULD POSIBLY GO
WRONG?

12

DIAC 2013, OWCM: One-Way Counter Mode

BIG
DATA

Emails
Social

networks

Video
surveillance

Telephone
conversations

SMS Industrial
secrets

Chats

Financial
secrets

What about insider
attacks and

abuses?

13

DIAC 2013, OWCM: One-Way Counter Mode

What about insider attacks
and abuses?

14

DIAC 2013, OWCM: One-Way Counter Mode

15

DIAC 2013, OWCM: One-Way Counter Mode

16

DIAC 2013, OWCM: One-Way Counter Mode

What about insider attacks
and abuses?

• An insider attack is intentional misuse by individuals
who are authorized to use computers and networks.

• An insider attack is more dangerous than outsider
attack from financial and safety and security losses
point of view.

• In the same time detecting and preventing insider
attacks is much more difficult than defending from
external attacks

17

DIAC 2013, OWCM: One-Way Counter Mode

Press conference
Aug 9th, 2013

 We need new thinking for a new
era. … and meanwhile technology
has given governments, including
our own, unprecedented capability

to monitor communications.

18

DIAC 2013, OWCM: One-Way Counter Mode

Press conference
Aug 9th, 2013

And the other thing that's
happening is, is that as

technology develops further,
technology itself may provide

us some additional
safeguards.

19

DIAC 2013, OWCM: One-Way Counter Mode

Press conference
Aug 9th, 2013

… I mean, there may be some
technological fixes that provide

another layer of assurance.
…

But it is absolutely true that with
the expansion of technology, this

is an area that's moving very
quickly -- with the revelations that
have depleted public trust, that if
there are some additional things
that we can do to build that trust

back up, then we should do them.

20

DIAC 2013, OWCM: One-Way Counter Mode

CAESAR call for submissions,
draft 3
• Submission requirements

– Security goals: A table quantifying, for each of the recommended parameter sets, the intended
number of bits of security (i.e., the logarithm base 2 of the attack cost) in each of the following
categories:

– confidentiality for the plaintext;
– confidentiality for the secret message number (omit if the secret message number has length

0);
– integrity for the plaintext;
– integrity for the associated data;
– integrity for the secret message number (omit if the secret message number has length 0);
– integrity for the public message number (omit if the public message number has length 0); and
– any additional security goals and robustness goals that the submitters wish to point out.

Can CAESAR competition
provide an additional safeguard

against insider abuses?

21

DIAC 2013, OWCM: One-Way Counter Mode

CAESAR call for submissions,
draft 3
• Submission requirements

– Security goals: A table quantifying, for each of the recommended parameter sets, the intended
number of bits of security (i.e., the logarithm base 2 of the attack cost) in each of the following
categories:

– confidentiality for the plaintext;
– confidentiality for the secret message number (omit if the secret message number has length

0);
– integrity for the plaintext;
– integrity for the associated data;
– integrity for the secret message number (omit if the secret message number has length 0);
– integrity for the public message number (omit if the public message number has length 0); and
– any additional security goals and robustness goals that the submitters wish to point out.

22

DIAC 2013, OWCM: One-Way Counter Mode

CAESAR call for submissions,
draft 3
• Submission requirements

– Security goals: A table quantifying, for each of the recommended parameter sets, the intended
number of bits of security (i.e., the logarithm base 2 of the attack cost) in each of the following
categories:

– confidentiality for the plaintext;
– confidentiality for the secret message number (omit if the secret message number has length

0);
– integrity for the plaintext;
– integrity for the associated data;
– integrity for the secret message number (omit if the secret message number has length 0);
– integrity for the public message number (omit if the public message number has length 0); and
– any additional security goals and robustness goals that the submitters wish to point out.

What about the robustness
against insider attacks and

insider abuses?

23

DIAC 2013, OWCM: One-Way Counter Mode

Easy exercise 1: Find two colliding
massages for CCM when key K is known

24

DIAC 2013, OWCM: One-Way Counter Mode

Easy exercise 2: Find two colliding
massages for GCM when key K is known

25

DIAC 2013, OWCM: One-Way Counter Mode

26

DIAC 2013, OWCM: One-Way Counter Mode

Easiest exercise 3: Find two colliding
massages for OCB when key K is known

27

DIAC 2013, OWCM: One-Way Counter Mode

28

DIAC 2013, OWCM: One-Way Counter Mode

Exploit 1 in "Secure audit logs"
• Adaptation of Bellare-Yee scenario of "Secure audit logs".
• An attacker is breaking into a machine that keeps activity logs that are

encrypted by an AEAD scheme.
• He/she has obtained the encryption key by some other means (physical

force, stealing, ...).
• In order to protect against such accidental revelation of encryption

keys, the authentication tags are kept in a separate and write protected
area.

• This way the existing encrypted logs are protected from being
overwritten with other fake logs.

• However, if the AEAD scheme was implemented by CCM, GCM or
OCB, the attacker can erase his/her previous (unsuccessful) attempts
to break-in by simply producing a log file that has the same
authentication tag as the originally encrypted log.

29

DIAC 2013, OWCM: One-Way Counter Mode

Exploit 2 in "Multi-cast authentication"
• Adaptation of Mitchell and Walker scenario of "multidestination secure

mail problem".
• Suppose Alice wants to send an authenticated message to Bob and

Claire in a group chat application.
• Assume further that all group communication goes through a central

hub which relays a single message from one party to the other two.
• At the start of the session the application establishes pairwise

symmetric keys among the participants, i.e. Alice and Bob shares the
key KAB, Alice and Claire shares the key KAC and Bob and Claire
shares KBC.

30

DIAC 2013, OWCM: One-Way Counter Mode

Exploit 2 in "Multi-cast authentication"

31

DIAC 2013, OWCM: One-Way Counter Mode

Exploit 2 in "Multi-cast authentication"

32

DIAC 2013, OWCM: One-Way Counter Mode

Exploit 2 in "Multi-cast authentication"

33

DIAC 2013, OWCM: One-Way Counter Mode

Should MAC's retain hash
properties when the
key is known in the next AEAD?
• There exist many scenarios where it is required that

the MAC function retains the properties of a
cryptographic hash function, when the key is known.

• However, the current popular AEAD schemes (such
as CCM, GCM or OCB) do not have this feature.

• Arguably, protocols and applications built on AEAD
schemes having this property will be more robust,
which is in accordance with one of the goals of
CAESAR (Competition for Authenticated Encryption:
Security, Applicability, and Robustness).

34

DIAC 2013, OWCM: One-Way Counter Mode

OWCM: One-Way Counter Mode
(initial design)

• Initial design of our AEAD scheme based on the counter mode
combined with a use of one-way compression function.

• Can be seen as a modification of the GCM scheme, where the
operations in GHASH are replaced by a use of a double-pipe
one-way compression function.

• The way how we combine the use of the one-way compression
function is similar as that used in the HMAC scheme.

• Our goal was to design a robust AEAD that will offer the
uniqueness of the MAC tags even if the secret key is revealed.

• The specific construction of the used one-way function and its
efficiency is still under our investigation.

• We would like to hear comments, critique and suggestions from
fellow cryptographers attending DIAC 2013.

35

DIAC 2013, OWCM: One-Way Counter Mode

36

DIAC 2013, OWCM: One-Way Counter Mode

37

DIAC 2013, OWCM: One-Way Counter Mode

38

DIAC 2013, OWCM: One-Way Counter Mode

Appendix 1

Should MAC’s retain hash properties when the
key is known in the next AEAD?

Danilo Gligoroski1 and Hristina Mihajloska2 and H̊akon Jacobsen1

1 Department of Telematics, Norwegian University of Science and Technology
(NTNU), Trondheim, NORWAY, {danilog, hakoja}@item.ntnu.no

2 “Ss Cyril and Methodius” University, Faculty of Computer Science and
Engineering (FINKI), Skopje, MACEDONIA, hristina.mihajloska@finki.ukim.mk

Abstract. The purpose of this note is to initiate a discussion at DIAC
2013 about the AEAD ciphers with the following property: “Users of
the cipher can easily find different messages that produce same authen-
tication tags.”. We offer several realistic scenarios how to exploit this
property in an AEAD cipher. As an easy exercise we describe how one of
the communicating parties that posses the secret key can find different
messages that give same authentication tag for CCM, GCM and OCB.
We point out that none of these scenarios can happen if the authenti-
cation is done by the use of cryptographic hash functions such as new
SHA-3 or the older HMAC scheme. This final point raise again the ne-
cessity of having ultra-fast one-way cryptographic functions.

1 Introduction

Cryptographic literature (for example Handbook of Applied Cryptography [10])
dealing with the problems of authenticated encryption considers schemes that
provide:

– Message authentication that provide data origin authentication with respect
to the original message source (and data integrity, but no uniqueness).

– Message authentication that provide data origin authentication with respect
to the original message source (and data integrity, AND uniqueness) - in [10,
Remark 9.8, pp. 325] referred to as MAC resistance with known key.

Most existing security models for AE [3] and its newer variant AEAD [2]
have security proofs where the forgery attempts are done by third parties i.e.,
the models are designed to detect intentional, unauthorized modifications of the
data, and accidental modifications but only by third parties.

However, as noticed in [10, Remark 9.8, pp. 325] if the authentication is
performed with a cryptographic hash function3, for example in the standard
Encrypt-then-MAC (EtM) scheme using HMAC [8], then the scope of protec-
tion against intentional and unauthorized modifications can be meaningfully

3 There referred to with the abbreviation MDC - Modification Detection Codes.

increased to also include the communicating parties (which holds the keys). In
particular, we might want the MAC to retain some of the properties of a hash
function when the key is known. We will give examples of some scenarios where
this feature can be useful in Section 2.

Unfortunately, the property of upgrading to a hash function under a known
key (as in EtM-with-HMAC), can lead to a significant drop in efficiency. To
address the need for an efficient AEAD scheme, several schemes have been pro-
posed (OCB [7]) and standardized (CCM [15] and GCM [9]). In these models
the problem of non-trusting communicating parties is not addressed at all. Note,
that this makes the implicit assumption that the communicating parties trust
each other, or the mutual integrity of the messages have to be guaranteed by
other cryptographic mechanisms such as digital signatures or HMACs, which
return us to the first situation of using the slower EtM-with-HMAC.

CAESAR (Competition for Authenticated Encryption: Security, Applicabil-
ity, and Robustness) [5] has the term Robustness as one of its main goals. Our
position is that authenticated ciphers that do not offer distinct tags for distinct
messages are possibly not robust ciphers. Additionally, when AEAD schemes are
used in protocols and applications, implementers might wrongly assume that dif-
ferent messages will always lead to different tags.

We would like to initiate a discussion on whether this is an issue that should
be considered for CEASAR submissions. To paraphrase Bernstein [6] from his
recent post to the crypto-competitions@googlegroups.com mailing-list (dis-
cussing some other requirements, but the statement is also applicable for the
issues we discuss in this note):

“Ignoring these requirements doesn’t make them go away. Ciphers
that fail to solve the problems simply force users to deploy their own
solutions, producing a complicated, fragile system, whereas it’s relatively
easy to integrate solutions directly into the ciphers.”

2 Exploits of AEAD ciphers with easy tag collisions

2.1 Exploit in “Secure audit logs”

The following exploit scenario is adopted from the Bellare-Yee article [4] about
the “Secure audit logs”. An attacker is breaking into a machine that keeps ac-
tivity logs that are encrypted by an AEAD scheme. He/she has obtained the
encryption key by some other means (physical force, stealing, ...). In order to
protect against such accidental revelation of encryption keys, the authentication
tags are kept in a separate and write protected area. This way the existing en-
crypted logs are protected from being overwritten with other fake logs. However,
if the AEAD scheme was implemented by CCM, GCM or OCB, the attacker can
erase his/her previous (unsuccessful) attempts to break-in by simply producing
a log file that has the same authentication tag as the originally encrypted log.

2

2.2 Multi-cast authentication

The following scenario is an adoption of the multidestination secure mail problem,
discussed by Mitchell and Walker [12, 11], to the setting of ciphers providing
authenticated encryption.

Suppose Alice wants to send an authenticated message to Bob and Claire
in a group chat application. Assume further that all group communication goes
through a central hub which relays a single message from one party to the other
two. At the start of the session the application establishes pairwise symmetric
keys among the participants, i.e. Alice and Bob shares the key KAB , Alice and
Claire shares the key KAC and Bob and Claire shares KBC . Exactly how these
keys are established is immaterial.

Assume that the chat application employs an AEAD scheme. Following the
notation of [13], an AEAD scheme is a function E : K×T ×A×S×M→ {0, 1}∗,
over the space of keys, public message numbers, associated data, secret message
numbers and messages. We write this function more compactly as:

C ‖ T ← EN,A
K (S,M),

where C ‖ T denotes that the ciphertext can be parsed into an “encryption-part”
and a “tag-part”. Since the nonce and associated data are not very relevant for
this exposition, we will for clarity ignore them in the above notation and simply
write EK(M).

In order to send the message X to both Bob and Claire, Alice proceeds as
follows:

1. She selects a session key KS ∈ K which will be used for this one message
only.

2. She computes the ciphertext C ‖ T ← EKS
(X).

3. Using the keys she shares with Bob and Claire individually, Alice prepares
the following message which is sent to both Bob and Claire:

C ‖ EKAB
(KS ‖ T) ‖ EKAC

(KS ‖ T). (1)

When Bob and Claire receive this message they can extract KS and T using
the keys they share with Alice, and verify the authenticity of the message.

The idea of this scheme is that since E is an authenticated encryption scheme,
Claire cannot modify C without it being detected by T . Additionally, she cannot
simply recompute a new ciphertext with the key KS , since she cannot get to the
old T value encrypted with the key shared between Alice and Bob.

Unfortunately, if the authenticated encryption cipher makes it easy to find
colliding tags for different messages when the key is known, the above scheme
can easily be broken. In particular, Claire can spoof a message to Bob as if it
came from Alice. For instance, if the application uses any one of CCM, GCM or
OCB as its authenticated cipher, Claire can create another ciphertext C ′ ‖ T ,
with C ′ 6= C, using any of the techniques described in Section 3. Assuming Claire
is able to intercept the message from the hub to Bob, she can swap C with C ′

in (1) and Bob will accept this to be a valid message from Alice.

3

3 Examples: How to find tag collisions for CCM, GCM
and OCB

3.1 How to find tag collisions for CCM

CCM is the abbreviation for Counter with Cipher Block Chaining-Message Au-
thentication Code [15]. CCM authenticated encryption with associated data ba-
sically combines the counter (CTR) mode for a data encryption and CBC-MAC
mode for a data authentication. It works only with an approved symmetric key
block cipher algorithm whose block size is 128 bits, such as AES [1]. Only one
underlying key is used for both the authentication and the encryption part. The
input to CCM includes three elements: 1) data that will be both authenticated
and encrypted, called the payload P ; 2) associated data, A that will be authen-
ticated but not encrypted; and 3) a unique value, called a nonce N , that is
assigned to the payload and the associated data.

To process each message block, a counter is encrypted with the underlying
block cipher and the result is XORed to the message for ciphertext produc-
tion. The message is also XORed with the accumulator which is then encrypted.
The accumulated value corresponds to the internal message authentication state,
and is kept being accumulated and updated until all the messages are processed.
After all blocks have been processed, the output is XORed with the first en-
crypted nonce, producing the authentication tag. At the end of processing of
each message block, the counter is also incremented for the next message block
encryption.

We give one scenario how to find colliding messages for CCM.
If we choose two consecutive message blocks P1 and P2, the formulas for the

internal message authentication state are given below:

X1 = EK(X0 ⊕ P1)

X2 = EK(X1 ⊕ P2)

where X0 is the accumulated value from the previous internal message authen-
tication state. If we replace the first message block P1 with an arbitrary new
value P ′1 then we have:

X ′1 = EK(X0 ⊕ P ′1)

In the next state we want to produce the same authenticated value X2, but now
with the new value X ′1 and a second message block P ′2 that will compensate the
introduced new value of P ′1:

X2 = EK(X ′1 ⊕ P ′2).

Thus,

X1 ⊕ P2 = X ′1 ⊕ P ′2,

so, P ′2 should be:

P ′2 = X1 ⊕ P2 ⊕ EK(X0 ⊕ P ′1). (2)

4

3.2 How to find tag collisions for GCM

GCM is the abbreviation for Galois/Counter Mode [9]. The encryption stage
is similar to CCM, but authentication is realized via universal hashing of the
produced ciphertext blocks over a binary Galois Field GF (2128) instead of the
second encryption in CCM. After all message blocks have been processed, the
output is XORed with the length of the message and associated data, and au-
thenticated just in the last step to produce a tag together with already encrypted
nonce.

To find two different plaintexts with the same authentication tag, we choose
two consecutive message blocks P1 and P2. The formulas for the internal message
authentication state are given below:

X1 = (X0 ⊕ C1) •H,

X2 = (X1 ⊕ C2) •H,

where X0 is the accumulated value from the previous internal message authen-
tication state, and C1 and C2 are the ciphertexts produced from the encryption
phase.

If we replace the first message block P1 with an arbitrary new value P ′1 then
we have:

X ′1 = (X0 ⊕ C ′1) •H.

In the next state we want to produce the same authenticated value X2 but now
with the new values X ′1 and changed second message block P ′2:

X2 = (X ′1 ⊕ C ′2) •H.

Thus,

X1 ⊕ C2 = X ′1 ⊕ C ′2,

where,

C ′2 = (X1 ⊕ C2)⊕X ′1.

So, for P ′2 we have:

C2 = P2 ⊕ EK(CTR2),

C ′2 = P ′2 ⊕ EK(CTR2),

where CTR2 = incr(CTR1) = incr(incr(N ||0311)) is a counter, produced from
the nonce:

P ′2 = EK(CTR2)⊕ (X1 ⊕ C2)⊕ (X0 ⊕ C ′1) •H. (3)

In Fig. 1 the images a) and c) give the same tag. Note that image a) is the
original message, image b) has changed one block in the original message and in
the image c) we have used equations (2) or (3) with the values for the second
changed block in order to produce the same tag.

5

Fig. 1. Simple example of messages with colliding tags for CCM or GCM.

3.3 How to find tag collisions for OCB

OCB3 is the AEAD modification of Offset CodeBook mode [14](OCB). It uses a
multiplication in GF (2128) but in a simpler way than in GCM. For every message
block, each noninitial offset is computed from the prior one by multiplying it by
a constant (an operation that has been called doubling). OCB3 uses different
initial offsets for encryption and authentication phases. For the first one, offset
is calculated as a nonce- and key-dependent value, but in the latter it starts from
0. This scheme is on-line: one does not need to know the length of the associated
data, the plaintext nor the ciphertext in order to proceed with encryption or
decryption.

The tag is produced from the encrypted value of the Checksum which is
computed as:

Checksum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Pm. (4)

Since the tag directly depends on the Checksum (4) which depends only on
the plaintext, we can have the same checksum between two totaly different files.
Just the final block of the second file has to be computed to make the checksum
the same.

Fig. 2. Simple example of messages with colliding tags for OCB.

In Fig. 2 we can replace the image a) with any image b), and we just com-
pensate the final block of b) in order to produce the same Checksum and then
the same tag.

6

4 Conclusion

We have shown that there exist scenarios where it is required that the MAC
function retains the properties of a cryptographic hash function, when the key
is known. However, the current popular AEAD schemes (such as CCM, GCM,
or OCB) do not have this feature. Arguably, protocols and applications built on
AEAD schemes having this property will be more robust, which is in accordance
with one of the goals of CAESAR. At the forthcoming DIAC 2013 we would like
to initiate a discussion about this topic.

References

1. AES. Advanced Encryption Standard. FIPS PUB 197, Federal Information Pro-
cessing Standards Publication, 2001.

2. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. Cryptology ePrint Archive,
Report 2000/025, 2000. http://eprint.iacr.org/.

3. Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In FOCS, pages 394–403. IEEE Computer
Society, 1997.

4. Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptography.
IACR Cryptology ePrint Archive, 2001:35, 2001.

5. D. J. Bernstein. Cryptographic competitions: CAESAR call for submissions, draft
3. May, 21, 2013. Available at http://competitions.cr.yp.to/caesar-call-3.

html.
6. D. J. Bernstein. Re: secret message numbers. Mailing list of

crypto-competitions@googlegroups.com, May 10 2013. crypto-competitions@

googlegroups.com.
7. T. Krovetz and P. Rogaway. The software performance of authenticated-encryption

modes. Fast Software Encryption - FSE 2011, 2011.
8. D. McGrew and K. Paterson. Authenticated encryption with aes-cbc and hmac-

sha. IETF, Internet-Draft, October 22 2012. http://tools.ietf.org/html/

draft-mcgrew-aead-aes-cbc-hmac-sha2-01.
9. D. McGrew and J. Viega. The Galois/Counter Mode of Operation (GCM).

Natl. Inst. Stand. Technol. http://www.csrc.nist.gov/groups/ST/toolkit/BCM/
documents/proposedmodes/gcm/gcm-revised-spec.pdf.

10. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 2001.

11. C. Mitchell and M. Walker. Solutions to the multidestination secure electronic
mail problem. Computers & Security, 7:483–488, 1988.

12. Chris J. Mitchell. Multi-destination secure electronic mail. Comput. J., 32(1):13–
15, 1989.

13. C. Namprempre, P. Rogaway, and T. Shrimpton. AE5 security notions: Definitions
implicit in the CAESAR call. Cryptology ePrint Archive, Report 2013/242, 2013.
http://eprint.iacr.org/.

14. P. Rogaway, M. Bellare, and J. Black. OCB: A Block-cipher Mode of Operation for
Efficient Authenticated Encryption. ACM Trans. Inf. Syst. Secur., 6(3):365–403,
2003.

15. D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). Avail-
able at http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/.

7

	Slide Number 1
	In this talk I will present the material from our two submissions to DIAC 2013�(as agreed with the organizer)
	In this talk I will present the material from our two submissions to DIAC 2013�(as agreed with the organizer)
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	What about insider attacks and abuses?
	Slide Number 14
	Slide Number 15
	What about insider attacks and abuses?
	Slide Number 17
	Slide Number 18
	Slide Number 19
	CAESAR call for submissions, draft 3
	CAESAR call for submissions, draft 3
	CAESAR call for submissions, draft 3
	Easy exercise 1: Find two colliding massages for CCM when key K is known
	Easy exercise 2: Find two colliding massages for GCM when key K is known
	Slide Number 25
	Easiest exercise 3: Find two colliding massages for OCB when key K is known
	Slide Number 27
	Exploit 1 in "Secure audit logs"
	Exploit 2 in "Multi-cast authentication"
	Exploit 2 in "Multi-cast authentication"
	Exploit 2 in "Multi-cast authentication"
	Exploit 2 in "Multi-cast authentication"
	Should MAC's retain hash properties when the�key is known in the next AEAD?
	OWCM: One-Way Counter Mode�(initial design)
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Appendix 1

