Parallelizable (Authenticated) Online Ciphers

Elena Andreeva
COSIC, KU Leuven

Joint work with: A.Bogdanov, A.Luykx, B.Mennink, E.Tischhauser and K.Yasuda

DIAC, Chicago
13/08/2013
This Talk

Nonce misuse resistant AE

Provably secure AE

Online AND Parallelizable AE

Efficient AE
Achieving Privacy

• We need
 – A) Randomization,
 – B) Stateful algorithm, or
 – C) Nonce
Privacy with Nonces

• Nonce use popular in AE

• Nonce: unique non-repeating value
 – E.g. counter 1, 2, 3, ...

• Problems
 – not always easy to implement
 – people **DO** reuse nonce
 – if repeated, then we lose all security
Nonce Misuse Resistance

• **Misuse resistant AE**
 – if correct nonce use, then secure AE
 – else we still obtain **reasonable** security
 (no disaster even if nonce reused)

• **Examples of misuse resistant AE**
 1. SIV [RS06]: offline
 2. McOE [FFLW12]: authenticated online cipher
Online Ciphers for Misuse Resistance

- **Online cipher**

 Cipher with \(C_i \) depending only on \(M_1 \ldots M_i \)

 ![Diagram of cipher](image)

- **No disaster**
 - If the 1st block is nonce, then perfect privacy
 - If not, then secure “up to common prefix”

- **Examples of online ciphers**
 - HCBC [BBKL01], M(H)CBC [N08], TC1/2/3 [RZ11]

- **Online cipher + Authentication** ➔ Authenticated Online Cipher
Authenticated Online Cipher

- **McOE [FFLW12]**

- **McOE-G**: 1 BC + 1 multiplication in $GF(2^n)$ per block
- completely sequential (Enc & Dec)
- adds authenticity to TC3 at minimal cost
 (more efficient than generic composition)
Parallelizable Authenticated Online Cipher

• Why?
 – to improve efficiency

• **BUT** existing (authenticated) online ciphers are inherently sequential

• Intuitively, parallelizability appears difficult
How to Achieve Parallelizability?

• Do not feed ciphertext blocks into next block encryption
 ➔ use only plaintext blocks for “dependency”

• Plaintext under control of adversaries
 ➔ some “masking” required
Our Approach

• Design parallelizable online authenticated cipher in two stages:
 1. Parallelizable online cipher (COPE)
 2. Dedicated authentication

COPA
COPE: Parallelizable Online Cipher

- Well parallelizable
- Single key + single primitive use
- 2 BC calls per block
- Online (nonce misuse resistant)
- Provably secure
COPA: Parallelizable Online Authenticated Cipher

- Well parallelizable
- Single key + single primitive use
- 2 BC calls per block
- Online (nonce misuse resistant)
- Provably secure
- Dealing with fractional M: idea of XLS [RR07]
COPA: Processing Associated Data

- Well parallelizable
- 1 BC call per AD block
COPA: Tag Generation

- Extends parallelizability of COPE
- 2 extra BC calls
- Online
Security

- 2 sequences of independent XEX evaluations
- Calculate the state collision probability (not trivial)
- If E is SPRP, COPE is CPA secure up to $2^{n/2}$ queries
- If E is SPRP, COPA is AE secure up to $2^{n/2}$ queries
COPE and COPA in Software

AES(128-bit)-NI Sandy Bridge

speed (cycles per byte)

message length (bytes)

MCBC
McOE-G
TC1/3

COPE
COPA
CTR
Summary

• COPE
 - parallelizable, online cipher
 - 5 times faster than TC1/3

• COPA = COPE + authentication
 - inherits COPE’s properties
 - 5 times faster than McOE-G
Thank you!